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The problem of real solutions

Given a system of real polynomial equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

with some number, say d, of complex solutions, what can we say
about the number, r, of real solutions?

Besides d ≥ r ≥ d mod 2, typically not much.

We can often say much more for structured systems; there
are many cases where either of these trivial bounds can be
improved. That is, there are often nontrivial upper bounds or
nontrivial lower bounds on the number of real soutions.
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Fewnomial Upper Bounds

Descartes’ (1636): A univariate polynomial with d+1 terms

c0x
a0 + c1x

a1 + · · · + cdx
ad

has at most d positive real roots.

This bound for univariate polynomials was only recently extended.

Khovanskii (1980): A system of n polynomial equations in

n variables involving k+n+1 monomials will have at most

2(k+n
2 )(n + 1)k+n solutions with all coordinates positive.

Enormous: When n = k = 2 the bound is 2634 = 5184.

What is the true bound, or Khovanskii number, χ(k, n)?
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Sharper Bounds

A smaller upper bound was found using Khovanskii’s method
and some geometry adapted to polynomials (Gale duality).

Bates, Bihan, S. χ(k, n) ≤ e2+3
4 2(k

2)nk.

The bound for all real solutions is e4+3
4 2(k

2)nk.

For k = n = 2, this bound is 20.778, but it can be lowered to
15.5, both of which are less than 5184.

Using an earlier construction of Bihan, this is sharp in the
asymptotic sense, for k fixed and n large.

Bihan, Rojas, S. χ(k, n) ≥ ⌊n+k
k

⌋k.
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Open Problems

There are many open questions about fewnomial bounds.

Bounds for other topological invariants of fewnomials.

Systems of equations whose exponents exhibit more structure?

Mixed systems (different exponents in each polynomial).

What is the actual value of χ(k, n)?

Most lacking are constructions of fewnomial systems with
many real solutions.
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Tropical lower bounds

In 1990, Kontsevich gave a recursion for the number Nd of
degree d rational curves interpolating 3d−1 points in P

2.

More recently, Welschinger proved that a particular signed (±1)
sum of the real rational curves was a constant, Wd.

Itenberg, Kharlamov, and Shustin used the tropical correspon-
dence theorem of Mikhalkin to show that

Wd ≥
d!

3
and lim

d→∞

log Wd

log Nd

= 1 .

Thus Wd is a non-trivial lower bound for the number of real
rational curves interpolating 3d−1 points in RP

2.

Partially inspired by this, Soprunova and I set out to develop a
theory of lower bounds for systems of polynomial equations.
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Lower bounds from topology

Topology provides a conceptually simple way to derive lower
bounds on the number of real solutions to systems of polynomials.

Suppose that the real solutions are the fiber of a map

f−1(x) where f : Y 7−→ S ,

with Y and S oriented and x ∈ S is a regular value of f .

Then f has a well-defined degree

deg(f) :=
∑

y∈f−1(x)

sign det df(y) .

(This sum is independent of x.)
Thus |deg(f)| is a lower bound on the number of solutions.
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Sparse polynomials, geometrically

A polynomial with support A ⊂ Z
n is

f =
∑

α∈A

cαxα ,

where xα := xα1
1 xα2

2 · · ·xαn
n .

This is the pullback of a linear form along the map

ϕ : (C∗)n ∋ x 7−→ [xα | α ∈ A] ∈ P
A .

If XA is the closure of the image, then a system of polynomials
with support A corresponds to a linear section of XA,

f1 = · · · = fn = 0 ←→ XA ∩ L ,

and real solutions are real points in the section.

Frank Sottile, Texas A&M University 7



An example

The system of polynomials

x2y + 2xy2 + xy − 1 = x2y − xy2 − xy + 2 = 0 ,

corresponds to a linear section of the toric variety

XA := [xy : x2y : xy2 : 1] = V(z1z2z3 − z3
0)

A

L

z1

z2

z3

solution -
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Polynomial systems as fibers

We realize XA ∩ L as the fiber of a map.

Let E ⊂ L be a codimension one
linear subspace and M ≃ P

n a
complementary linear space.

The projection f from E sends
XA to M with XA∩L the fiber
above x = L ∩ M .
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Restricting to YA := XA∩RP
A, the real solutions are fibers of

f : YA → M ∩ RP
A ≃ RP

n .

If YA and RP
n were orientible, |deg(f)| is a lower bound.
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Orientability of real toric varieties

YA and RP
n are typically not orientible. This is improved

by pulling back to the spheres S
A and S

n, which are oriented,

f : YA ⊂ RP
A

f

−−− → RP
n

f+ : Y +
A ⊂ S

A
f+

−−− → S
n

? ? ?

The orientability of the spherical toric variety Y +
A is characterized

using the Newton polytope of A. (Details omitted)

When Y +
A is orientable, |deg(f+)| is a lower bound on the

number of real solutions. The challenge is to compute this
degree.

Frank Sottile, Texas A&M University 10



Foldable triangulations

A triangulation of a polytope in R
n is foldable if it is 2-

colorable, equivalently, if its vertices are n+1 colored.

0

0

0

2 2

1

1

f
−−−−→

0

2

1

The vertex coloring defines a folding map to a simplex, whose
degree is the imbalance of the folding. (Here 4 − 2 = 2.)

A foldable triangulation of conv(A) gives a corresponding Wron-

ski projection f : S
A → S

n. Restricting this to YA, this leads
to Wronski polynomial systems on YA, which are the fibers of
this map.

Frank Sottile, Texas A&M University 11



Toric degenerations

A regular unimodular triangulation in-
duces a degeneration t.YA of the toric
variety YA to a union of coordinate
planes encoded in the triangulation.

t = 1 t = 1/7
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Degree from toric degeneration
If the toric degeneration YA does not meet the center of the

projection f , for 0 < t < 1, then we deduce

Theorem. If Y +
A is orientable, then the number of real solutions

to a system of Wronski polynomials coming from a foldable

triangulation on A is at least the imbalance of the folding.

Wronski systems from the hexagon have at least 2 solutions:

3(1 + xy + x2y2) + 5(x + xy2)
+(y + x2y) = 0

(1 + xy + x2y2) − 2(x + xy2)
−3(y + x2y) = 0
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Polynomial systems from posets

What is any of this good for?

A partially ordered set P (poset) has natural Wronski polynomial
systems with variables P . The toric varieties are oriented if and
only if P is ranked modulo 2, and the lower bound is the
sign-imbalance σ(P ) of P , studied by Stanley and Sjöstrand.

Example.

P :=
w y

x z

Monomials: order ideals
{∅, x, z, wx, xz, yz, xyz, wxz, wxyz}

Linear extensions and sign imbalance
wxyz wyxz ywxz wyzx ywzx yzwx σ(P )

+ − + + − + 2

Wronski poly: c4 wxyz
+ c3(xyz + wxz)

+ c2(wx + xz + yz)
+ c1(x + z)

+ c0

Frank Sottile, Texas A&M University 14



Inverse Wronski problem

The Wronskian of a (linear space of) univariate polynomials
f1(t), . . . , fm(t) of degree m+p−1 is the determinant

Wr(f1(t), . . . , fm(t)) := det

(

(

d

dt

)i

fj(t)

)

,

which has degree mp (and is considered up to a scalar).

Inverse Wronski problem: Given a (real) polynomial F (t) of
degree mp, which linear spaces have Wronskian F (t)?

Schubert (1884) computed the number of complex solutions.
Mukhin, Tarasov, and Varchenko showed that if every root of
F (t) is real, then all spaces are real. (Shapiro Conjecture.)
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Lower bounds in Schubert calculus

Assume p ≤ m. If m+p is odd, set σm,p to be

1!2! · · · (m−1)!(p−1)!(p−2)! · · · (p−m+1)!(mp
2 )!

(p−m+2)!(p−m+4)! · · · (p+m−2)!
“

p−m+1
2

”

!
“

p−m+3
2

”

! · · ·
“

p+m−1
2

”

!
.

Set σm,p = 0 if m+p is even. If p > m, then set σm,p := σp,m.

Eremenko-Gabrielov. There are at least σm,p real m-dimensional

spaces of polynomials of degree m+p−1 with Wronskian a given

general polynomial F (t) of degree mp.

They used Schubert induction.

This can be deduced from polynomial systems for the poset
Cm × Cp (product of two chains) using SAGBI degenerations.
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Data for m = p = 3
Observed numbers of real spaces versus c := number of

complex conjugate pairs of roots of F (t). Note that σ3,3 = 0.

c 0 2 4 6 8 10 12 14 16 18 20

1 1099 7975 42235 9081 6102

2 24495 30089 25992 5054 3632

3 39371 35022 15924 3150 1990

4 76117 14481 3754 1375

c 22 24 26 28 30 32 34 36 38 40 42

1 8827 1597 4207 1343 172 17362

2 4114 955 1586 832 63 3188

3 2183 494 622 367 35 842

4 2925 271 364 204 32 477
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Tak!
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