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Experimentation in the Schubert
Calculus

The Schubert calculus provides a rich and well-structured family of

problems in enumerative geometry which may be used as a laboratory

for exploring ill-understood phenomena, as it is very easy to model

moderate-sized Schubert problems on a computer.

These lectures will discuss two such phenomena: reality of solutions

to systems of equations from geometry and Galois groups of enumerative

problems.

We will discuss a number of proofs, many conjectures, and hints of

additional structure that can be seen in data which has been amassed

through massive (several tera Hertz years) computations exploring these

phenomena.
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Wronskian and the MTV Theorem

The Wronskian of polynomials f1, . . . , fm ∈ C[t] is

Wr := det








f1(t) f2(t) · · · fm(t)

f ′
1(t) f ′

2(t) · · · f ′
m(t)

... ... . . . ...

f
(m−1)
1 (t) f

(m−1)
2 (t) · · · f (m−1)

m (t)








.

When deg(fi) = m+p−1, deg(Wr) = mp. Moreover, up to

scalar, Wr depends only on the linear span P of the fi, and only

finitely many spans P have a given Wronskian.

Theorem. (Mukhin, Tarasov, Varchenko) If Wr(P ) has only real roots,

then P has a basis of real polynomials.

Those spans P with a given Wronskian are the solutions to a

system of polynomial equations, so this is an example of a system of

equations with only real solutions.
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Polynomial systems with only real
solutions

Among the roots of a real univariate polynomial f , some are real and

the rest occur in complex-conjugate pairs.

Rarely are all roots of f real.

A primary example that comes to mind is when f is the characteristic

polynomial of a real symmetric matrix, which only has real eigenvalues.

Similarly, a first example of a system of multivariate polynomials with

only real solutions is the system for the eigenvalues/eigenvectors of a

symmetric matrix.

It will turn out that this elementary fact from linear algebra is behind

the unexpected reality of the MTV Theorem, whose proof I will sketch.
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MTV Theorem in 3–space (m = p = 2)

Let γ(t) = (t, t2, t3) be the rational normal curve

A cubic polynomial f(t) ⇐⇒ affine function applied to γ

⇐⇒ affine hyperplane, f⊥

Two polynomials f, g ⇐⇒ two affine hyperplanes

⇐⇒ a line f⊥ ∩ g⊥

Wr(f, g)(s) = 0 ⇐⇒ the line f⊥ ∩ g⊥ meets

tangent line to γ at γ(s).

Wr(f, g) is a given

quartic F
⇐⇒ f⊥ ∩ g⊥ meets tangents to γ

at the four roots of F
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View Animation



Numerical accident ?

The proof begins with a numerical accident.

In 1884, Schubert (essentially) determined that

#Wr
−1

(F (t)) =
(mp)! 0!1!2! · · ·m − 1!

p!(p+1)! · · · (p+m−1)!
.

Call this number deg(m, p).

This number is also the dimension of the space of invariants

deg(m, p)
!
= dim

(

(C
m
)
⊗mp

)slmC

.

Strengthening this coincidence is at the heart of our story.
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A remarkable function

For i = 1, . . . ,m let yi(t) be a polynomial of degree ip. Define the

master function

Φ :=

m∏

i=1

Discr(yi)

/
m−1∏

i=1

Res(yi, yi+1) ,

where Discr and Res are the classical discriminant and resultant.

Writing Φ in terms of the roots si,j of yi gives,

Φ(s) =

m∏

i=1

∏

j 6=k

(si,j − si,k)
2
·

m−1∏

i=1

∏

j,k

(si,j − si+1,k)
−1

.

(The exponents come from the Cartan matrix of type A.)

Remarkably, deg(m, p) counts the (orbits of) critical points of Φ(s).
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Schematic of proof

Critical points of Φ
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Critical points of master function

For i = 1, . . . ,m, let yi(t) be a polynomial of degree ip. Recall the

master function

Φ :=

m∏

i=1

Discr(yi)

/
m−1∏

i=1

Res(yi, yi+1) .

Fix ym(t) to be a polynomial of degree mp with roots s :=

(s1, . . . , smp). This will be our Wronski polynomial.

The master function Φs(x) depends on the roots x of the other yi.

Let x be a critical point of Φs(x), and y := (y1, . . . , ym−1) the

corresponding polynomials whose roots are x.

Theorem. (MV) There are deg(m, p) such critical points y.
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Spaces of polynomials from y

For polynomials y = (y1, . . . , ym−1), with deg yi = ip,

the fundamental differential operator Dy is

(
d
dt

− ln
′( ym

ym−1

))
· · ·

(
d
dt

− ln
′(y1

y1

))(
d
dt

− ln
′(
y1

))
.

Let Vy be the kernel of Dy.

Theorem. (MV)

1. Vy is a space of polynomials iff y is a critical point of Φs.

2. If f1, . . . , fm span Vy with deg fi = p+i, then

y1 = f1 ,

y2 = Wr(f1, f2) ,
...

ym = Wr(f1, f2, . . . , fm) .
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Finite-dimensional slmC-modules

Finite-dimensional slmC-modules V are sum of weight spaces V [µ].

The singular vectors, singV [µ], in V [µ] are those annihilated by n+.

We have the direct sum decomposition

V =
⊕

µ

UslmC.singV [µ] ,

where UslmC is the universal enveloping algebra.

Each singular vector generates an irreducible summand of V .

Consequently, finding a basis of the singular vectors decomposes V into

irreducible submodules.
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Periodic Gaudin model

V := dual of vector representation of slmC (also glmC).

Let ei,j ∈ glmC be the elementary matrix with 1 in i, j position.

Define an operator Xi,j(t) := δi,j
d

dt
−

mp∑

k=1

e
(k)
i,j

t − sk
,

where e
(k)
i,j acts on the kth factor in V ⊗mp.

Formal conjugate of the expansion of the row determinant of (Xi,j) is

dm

dtm
+ K1(t)

dm−1

dtm−1
+ · · · + Km−1(t)

d

dt
+ Km(t) .

K1(t), . . . , Km(t) are the Gaudin Hamiltonians. They form a family

of commuting operators on V ⊗mp, centralizing glmC.
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Bethe Ansatz for Gaudin model

In the theory of integrable systems, Bethe Ansätze are conjectural

methods to find the joint eigenvectors and spectra of families of

commuting operators.

As the Gaudin Hamiltonians centralize the action of slmC, the Bethe

Ansatz also gives a precise way to understand
(
V ⊗mp

)slmC
.

The idea is to define a (rational) universal weight function

β :
spaces of roots of
y1, . . . , ym−1
︸ ︷︷ ︸

x

, ym︸︷︷︸
s

−→ 0-weight space of V ⊗mp ,

and then address for which values (x, s) is β(x, s) slmC-invariant.
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Completeness of the Bethe Ansatz

Theorem. (MTV) Let x be a critical point of the master function Φs.

1. β(x, s) is well-defined, non-zero, and a joint eigenvector of the

Gaudin Hamiltonians.

2. β(x, s) is a slmC-invariant.

3. When s is general, the vectors β(x, s) for x a critical point form a

basis of
(
V ⊗mp

)slmC
.

4. When s is general, the Gaudin Hamiltonians have simple spectrum.

5. The eigenvalues λi(t) of Ki(t) on β(x, s) satisfy

dm

dtm
+ λ1(t)

dm−1

dtm−1
+ · · · + λm−1(t)

d

dt
+ λm(t) =

(
d
dt

− ln
′( ym

ym−1

))
· · ·

(
d
dt

− ln
′(y2

y1

))(
d
dt

− ln
′(
y1

))
,

the fundamental differential operator of the critical point x.
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Proof of the Shapiro Conjecture

Usual Euclidean inner product on V induces the Shapovalov form on

V ⊗mp, which is slmC-invariant.

Gaudin Hamiltonians are symmetric w.r.t the Shapovalov form.

Therefore, when s and t are real, their eigenvalues λi(t) on a vector

β(x, s) for a critical point x are real.

Then the fundamental differential operator is real, and thus its kernel

Vx is also real.

This implies the MTV Reality Theorem, as spaces Vx for x a critical

point give all spaces of polynomials whose Wronskian has roots s.
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Thank you for your attention!
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