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The Problem of Four Lines

What are the lines mi meeting four general lines ℓ1, ℓ2, ℓ3, and ℓ4?

The lines ℓ1, ℓ2, ℓ3 lie on a unique hyperboloid Q of one sheet, and the

lines that meet ℓ1, ℓ2, ℓ3 form one ruling of Q. Thus the solutions mi are

the lines in that ruling passing through the points of intersection ℓ4 ∩ Q.

Rotating the line ℓ4 180◦

around the point p inter-

changes the two solution lines

m1, m2.

This shows that

The Galois group of the problem of four lines is the symmetric group S2.
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A Problem with Exceptional Geometry

Q: What 4-planes H in C8 that meet each of general 4-planes

K1, K2, K3, K4 in a 2-dimensional subspace?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8 meeting

each of K1, K2, K3, K4. Schematically, 4 = 4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉 for

1 ≤ i < j ≤ 4. Schematically,
4
= 6.

It follows that the Galois group of
4
= 6 is equal to the Galois group of

4 = 4, which is known to be the symmetric group S4.

This problem
4
= 6 also has exceptional reality: If K1, K2, K3, K4

are real, then either two or six of the Hi,j are real, and never four or zero.
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Galois Groups of Enumerative Problems

In 1870, Jordan explained how algebraic Galois groups arise naturally from

problems in enumerative geometry, and in 1979 Harris showed that such an

algebraic Galois group coincides with a geometric monodromy group.

This Galois group of a geometric problem is a subtle invariant. When it

is deficient (i.e. not the full symmetric group), the geometric problem has

some exceptional, intrinsic structure.

Work of Harris and of Vakil give several methods to determine Galois groups,

at least experimentally.

I will describe a project to study Galois groups for problems coming from the

Schubert calculus using numerical algebraic geometry, symbolic computation,

and combinatorics. We expect more questions than answers.
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Some Theory

A degree e dominant map E
π
−→ B of equidimensional irreducible varieties

(up to codimension one, E → B is a covering space of degree e)

Ã degree e extension of fields of rational functions π∗K(B) ⊂ K(E).

Define the Galois group Gal(E/B) ⊂ Se to be the Galois group of the

Galois closure of this extension.

Harris’s Theorem. (Work over C.) Restricting E → B to open subsets

over which π is a covering space, E′ → B′, the Galois group is equal to

the monodromy group of deck transformations.

This is the group of permutations of a fixed fiber induced by analytically

continuing the fiber over loops in the base.

Point de départ: Such monodromy permutations are readily and reliably

computed using methods of numerical algebraic geometry.
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Enumerative Geometry

“Enumerative Geometry is the art of determining the number e of geometric

figures x having specified positions with respect to other, fixed figures b.”

— Hermann Cäser Hannibal Schubert, 1879.

B := configuration space of the fixed figures, and X := the space of the

figures x we count. Then E ⊂ X × B consists of pairs (x, b) where

x ∈ X has given position with respect to b ∈ B.

The projection E → B is a degree e cover outside of some discriminant

locus, and the Galois group of the enumerative problem is Gal(E/B).

In the problem of four lines, B = four-tuples of lines, X = lines, and

E consists of 5-tuples (m, ℓ1, ℓ2, ℓ3, ℓ4) with m meeting each ℓi. We

showed that this has Galois group the symmetric group S2.
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Schubert Problems

The Schubert calculus is an algorithmic method promulgated by Schubert

to solve a wide class of problems in enumerative geometry.

Schubert problems are problems

from enumerative geometry in-

volving linear subspaces of a vec-

tor space incident upon other lin-

ear spaces, such as the problem

of four lines, and the problems
4 = 4 and

4
= 6. ℓ1

ℓ2

ℓ3

ℓ4

m1

m2

Q

As there are many millions of computable Schubert problems, many with

their own unique geometry, they provide a rich and convenient laboratory

for studying Galois groups of geometric problems.
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Proof-of-concept computation

Leykin and I used off-the-shelf numerical homotopy continuation software,

and an implementation of (an easy version of) the Pieri homotopy algorithm

to compute Galois groups of some Schubert problems formulated as the

intersection of a skew Schubert variety with Schubert hypersurfaces.

In every case, we found enough monodromy permutations to generate the

full symmetric group (determined by Gap). This included one Schubert

problem with e = 17, 589 solutions.

We conjecture that problems of this type will always have the full symmetric

group as Galois group.

To investigate this question for more general Schubert problems, both on

Grassmannians and on other flag manifolds, we need more algorithms and

implementations.
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Numerical Project

Recent work, including certified continuation (Beltrán and Leykin),

Littlewood-Richardson homotopies (Vakil, Verschelde, and S.), regener-

ation (Hauenstein), implementation of Pieri and of Littlewood-Richardson

homotopies (Martín del Campo and Leykin) will enable the reliable numerical

computation of Galois groups of more general Schubert problems.

We plan to use a supercomputer whose day job is calculus instruction to

investigate many of the millions of accessible and computable Schubert

problems. Our intention is to build a library of Schubert problems (expected

to be very few) whose Galois groups are deficient.

These data would be used to generate conjectures, leading to proofs about

Galois groups of Schubert problems, as well as showcase the possibilities of

numerical computation.
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Vakil’s Alternating Lemma

Suppose S ⊂ B has a dense set of regular values of E → B. Then

Gal(E|S/S) →֒ Gal(E/B) .

This occurs often in enumerative geometry. Also common are

geometric degenerations

X ∩ Y Ã W ∪ Z

which give natural families S ⊂ B such that

E|S ≃ F
⋃

G where F → S and G → S

are the sub-enumerative problems for W & Z of degrees f , g, where

f + g = e.

Vakil’s Alternating Criterion. If f 6= g and both Gal(F/S) and Gal(G/S)

contain the alernating groups Af and Ag, then Gal(E/B) contains the

alternating group Ae.
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Application of Vakil’s Criterion

Vakil’s geometric Littlewood-Richardson rule and the earlier Pieri degenera-

tions allow the use of Vakil’s criterion.

Christopher Brooks has an efficient python script implementing Vakil’s

geometric Littlewood-Richardson rule and criterion. We intend to use it in

our study of Galois groups. Managing mountains of data is a challenge.

For example, all Schubert problems involving lines in Pn for n ≤ 40 have

at least alternating Galois groups, which inspired us to find a proof of the

following.

Theorem. (Brooks, Martín del Campo, S.) The Galois group of any Schubert

problem involving lines in Pn is at least alternating.

The proof involves an asymptotic insight, a combinatorial lemma for

most cases, and the estimation of a Riemann integral for the rest. This inte-

gral comes from a new interpretation of the cohomology of Grassmannians,

and it forms part of the Ph.D. thesis of Martín del Campo.

Frank Sottile, Texas A&M University 10



Specialization Lemma

Suppose that π : E → B with B rational. Then the fibre π−1(y)

above a Q-rational point y ∈ B(Q) is has a minimal polynomial py(t) ∈

Q[t]. In this situation, the algebraic Galois group of py(t) is a subgroup of

Gal(E/B).

This can be applied to Schubert problems (and many other geometric

problems). The minimal polynomial of such fibers are easy to compute in

many cases when e . 50, which should enable this method to be used to

study Galois groups of many thousands to millions of Schubert problems.

The bottleneck is that we do not know software that can compute Galois

groups of the huge polynomials we generate. The software that we know of

cannot handle even moderate-sized polynomials (degree ∼ 20, with integer

coefficients ∼ 10200).
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Thank You!
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