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ABSTRACT

Euler’s vision of a generalized concept of function was a forerunner of the modern concept
of distribution, and his efforts to give meaning to divergent series eventually led to the con-
cepts of asymptotic series, summability, and distributional convergence. The introduction
of such suitable abstract concepts does not automatically prevent mistakes or inconsis-
tencies resulting from careless formal reasoning. We deal with a cluster of such issues
associated with the occurrence of a distributional singularity on the boundary of a domain
of integration. Apparent paradoxes are resolved by introducing new classes of test func-
tions and distributions adapted to the problems at hand; one can regard the construction
as attributing internal structure to boundary points.
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1 Introduction

It is clear from the articles in the Mathematics Magazine special issue devoted to Leonhard

Euler, especially those of Lützen [13] and Kline [12], that in some ways Euler’s sensibilities

and talents were closer to those of a creative theoretical physicist such as Richard Feynman

or Paul Dirac than those of a modern rigorous mathematician. If it had not been so, many of

his most important contributions would not have seen the light of day.

Like most of his contemporaries, Euler “trusted the symbols far more than logic” [12]. If an

infinite series did not converge for some values of a variable, the response was not to reject it

as meaningless; rather, it was taken for granted that the series had a meaning and the task was

to find it. Often, formal manipulations gave useful results, whose justifications were achieved

only in the twentieth-century theories of asymptotics, summability (in the sense of Cesàro and

Riesz), and convergence in spaces of distributions [12].

Euler worked during the period of transition from the naive notion of a function as an algebraic

formula to the modern concept of a function as an arbitrary association of dependent and

independent variables. His writings can be cited on both sides of the debate [13]. Because of

the limitations of nineteenth-century analysis, the new definition was a restriction as much as

an extension. Euler’s intuition told him that generalized functions that do not satisfy draconian

requirements of smoothness or even pointwise definability are too important to be left out. His

vision of a generalized calculus was vindicated, as closely as it could be, by the modern theory

of distributions [13].

Powerful ideas are dangerous. To paraphrase a remark of Valentine Bargmann, it is not correct

to say that the work of Laurent Schwartz justifies everything that physicists do with the Dirac

delta function, because sometimes they do things that are clearly wrong. There is a spectrum

of responses to this situation. The first (chosen by too many mathematicians) is to dismiss

distributions as untrustworthy, a kind of pornography that should be kept out of the hands of

engineering and science students. Another (adopted by many practitioners) is to rationalize

after the fact whatever interpretation of the symbols gives the right answer in the problem at

hand; as we shall see below, sometimes this is done in blatant contradiction to interpretations



adopted in other contexts. A safer approach is to regard the delta function as a heuristic de-

vice that leads rapidly to formulas whose correctness must then be rigorously verified (e.g., by

substituting a putative solution back into a differential equation). But one cannot be satisfied

just with this; if distributions are unambiguously defined as linear functionals on spaces of test

functions, then their properties must be unambiguous, and the mathematician should deter-

mine which formulas and calculational rules are true and why — tightening up the definitions

when necessary.

2 Some puzzles

We begin with a problem that surely would have delighted Euler: Evaluate the integral∫ ∞

0
cos(2kx) dx. (2.1)

In the classical sense it does not converge, but nevertheless it arises naturally in the spectral

theory of simple differential operators and in related applications to, for example, quantum field

theory. (It is a simple analogue of integrals that arose in [3].) One expects (2.1) to make sense

as a distribution in k, with k ≥ 0. (It is essentially the orthogonality relation for the Fourier

cosine transform, in which k is inherently nonnegative.) We now evaluate the integral in two

very plausible ways, getting two different answers.

First, we argue that ∫ ∞

0
cos(2kx) dx =

1
2

∫ ∞

−∞
cos(2kx) dx (2.2)

=
1
2

∫ ∞

−∞
e2ikx dx

= πδ(2k)

=
π

2
δ(k).

Here the last two steps are well-known distributional identities, and the rest is elementary

complex analysis.

On the other hand, we calculate∫ ∞

0
cos(2kx) dx =

sin(2kx)
2k

∣∣∣∣∞
x=0

= lim
x→∞

sin(2kx)
2k

.

By definition of a distributional integral, we must evaluate this limit after integrating over a test

function, f(k), with support in [0,∞):

lim
x→∞

∫ ∞

0

sin(2kx)
2k

f(k) dk = lim
x→∞

∫ ∞

0

sinu
2u

f
( u

2x

)
du (2.3)

=
1
2
f(0)

∫ ∞

0

sinu
u

du

=
π

4
f(0),



where the last step uses a well-known integral. That is,∫ ∞

0
cos(2kx) dx =

π

4
δ(k). (2.4)

One way to resolve the conflict between (2.2) and (2.4) is to conclude a posteriori that the

(standard!) interpretation of δ used to pass from (2.3) to (2.4) is incorrect: Instead, one should

postulate that ∫ ∞

0
f(k)δ(k) dk =

1
2
f(0), (2.5)

or, equivalently,

δ(k)H(k) =
1
2
δ(k). (2.6)

Here H is the Heaviside step function; other common notations for it are u and θ.

Formulas (2.5) and (2.6) are not new to the literature [16, 2]. Vibet [16] offers a proof: Since
1
2

d
dkH(k)2 = H(k)dH

dk = H(k)δ(k) and H(k)2 = H(k), (2.6) follows. He does not note

that multiplying (2.6) by H(k) and using H(k)2 = H(k) again yields the surprising equation

H(k)δ(k) = 1
2H(k)δ(k) (and by iteration . . . = 1

4H(k)δ(k) = . . .); but he does assert that

H(k)n−1δ(k) = 1
nδ(k) and that this relationship is needed to solve certain engineering prob-

lems properly. (Paskusz [14] criticizes [16] similarly by concluding from (2.6) that H(k) = 1
2 .

It may be objected (correctly) that this conclusion holds only for k = 0, but even that is incon-

sistent with a literal interpretation of H(k)2 = H(k). The real point, of course, is that the value

of a distribution at one point is not well-defined, in general. It is noteworthy, however, that such

pointwise definitions of H(0) are used even in relatively sophisticated and accurate papers

such as [2] to motivate, or at least to parametrize, rival definitions of δ(k) when 0 is an endpoint

of the interval of integration. We thank R. Nevels for pointing out references [16, 14, 2].)

Clearly, a more careful analysis of definitions is needed to determine whether or not the factor
1
2 does belong in (2.4), (2.5), (2.6). It will be necessary to redefine distributions, treating the

point k = 0 in a special way.

3 Spaces with thick points

Let a ∈ R. We shall define D∗,a , the space of test functions with a thick point located at x = a,

and D′∗,a , the corresponding space of distributions. A function φ with domain R belongs to D∗,a
if it has compact support, it is smooth in R \ {a}, and at x = a all its one-sided derivatives,

φ(n)(a± 0) = lim
x→a±

φ(n)(x), ∀n ∈ N, (3.1)

exist. D∗,a has a natural topology, in which D(R) is the closed subspace where φ(n)(a + 0) =
φ(n)(a − 0), ∀n ∈ N. The elements of D′∗,a are the distributions defined in the standard way as

the linear functionals on this enlarged space of test functions.

One can also define in a similar way the spacesA∗,a andA′∗,a for any of the usual spaces of test

functions and distributions. For instance, E ′∗,a is the space of compactly supported distributions

with a thick point at x = a, and S ′∗,a the corresponding space of tempered distributions. Without

loss of generality we shall take a = 0 and use the simpler notations A∗ and A′∗ . It is clear that

instead of one thick point one could consider a space with a finite number of thick points, or



even an infinite (but discrete) set of them. Somewhat less trivial, and beyond the scope of

this paper, would be the extension to distributions in several variables. In fact, the idea of

considering functions and generalized functions in spaces with thick points was apparently

first proposed by Blanchet and Faye [1] in the context of finite parts, pseudo-functions and

Hadamard regularization studied by Sellier [15]; their analysis is aimed at the study of the

dynamics of point particles in high post-Newtonian approximations of general relativity, and it

thus developed in dimension 3 (which is also the natural arena for a precise reformulation of

the work of Blinder [2]).

If X and Y are topological vector spaces with X ⊂ Y , the inclusion, i, being continuous, we

shall denote by π the adjoint operator, π = i′, which is a projection from Y ′ to X ′. In the case

of spaces with thick points, one has A ⊂ A∗,a , and thus we have a projection π : A′∗,a → A′,
given explicitly as

〈π(f), φ〉A′×A = 〈f, φ〉A′∗,a×A∗,a .

Every distribution g ∈ A′ can be extended to A′∗,a ; that is, there exist distributions f ∈ A′∗,a
such that π(f) = g. If f0 is any extension, then the most general extension is given as

f = f0 +
n∑

j=0

αjsj , (3.2)

where sj = sj,a are the distributions that give the saltus (jump) of the jth derivative across

x = a,

〈sj, φ〉 = φ(j)(a+ 0)− φ(j)(a− 0), (3.3)

where n ∈ N, and where α0, . . . , αn are arbitrary constants.

The derivative of φ ∈ A∗,a is defined classically. (In particular, a saltus in φ does not generate

a δ term in φ′.) Then we may define the derivatives of the distributions of A′∗,a by the usual

duality process, 〈f ′, φ〉 = −〈f, φ′〉. Clearly, π(f ′) = π(f)′. Also, sj = (−1)js(j)0 .

We shall consider the one-sided delta functions at the thick point, δ±(x) = δ
(
x − (a ± 0)

)
,

defined as 〈
δ
(
x− (a± 0)

)
, φ(x)

〉
= φ(a± 0). (3.4)

Observe that s0(x) = δ
(
x− (a+0)

)− δ(x− (a− 0)
)
, and more generally (−1)jsj(x) = δ(j)

(
x−

(a+ 0)
) − δ(j)

(
x− (a− 0)

)
.

It is important to observe that the derivative formulas in the space A′∗,a can be somewhat differ-

ent from the usual derivative formulas. Indeed, suppose that f ∈ A′∗,a is a regular distribution

generated by a function that is of class C1 in both (−∞, a] and [a,∞) but that may have a jump

[f ] = f(a+ 0)− f(a− 0) across the thick point. Then f can also be considered an element of

the usual space of distributions A′, and we have the well-known formula [11]

df

dx
=
df

dx
+ [f ]δ(x− a), (3.5)

where the overbar denotes the distributional derivative and df/dx is the ordinary (classical)

derivative. However, the derivative in the space A′∗,a , denoted d∗f/dx, is given by the relation

d∗f
dx

=
df

dx
+ f(a+ 0)δ+(x)− f(a− 0)δ−(x). (3.6)



Naturally, (3.5) and (3.6) satisfy π(d∗f/dx) = df/dx. Nevertheless, if f is continuous at x = a,

then the d derivative coincides with the ordinary derivative, but in the space A′∗,a we have

d∗f
dx

=
df

dx
+ f(a)s0(x). (3.7)

Observe, in particular, that if c is a constant then

d∗c
dx

= cs0(x). (3.8)

In the space A′∗,a the homogenous differential equation d∗f/dx = 0 has only the trivial solution,

while if g ∈ A′∗,a the equation d∗f/dx = g has at most one solution. (Actually, in the spaces

D′∗,a or S ′∗,a the equation d∗f/dx = g has exactly one solution, but in other spaces, such as

E ′∗,a , existence requires the extra condition 〈g, 1〉 = 0.)
The general form of the extensions of the Dirac delta function δ(x− a) to the thick-point space

that are of order 0, that is, that do not contain derivatives of the deltas, is

δ∗,a,λ(x) = λδ
(
x− (a+ 0)

)
+ (1− λ)δ

(
x− (a− 0)

)
, (3.9)

where λ is any constant. The case when λ = 1
2 gives us the only such extension,

δ̃(x− a) = δ∗,a,1/2(x) = 1
2

[
δ
(
x− (a+ 0)

)
+ δ

(
x− (a− 0)

)]
, (3.10)

that is symmetric with respect to x = a.

Let us now consider multiplication in the spaces A′∗,a . Any space of distributions A′ has a

corresponding Moyal algebra B, the space of multipliers of A and of A′, i.e., those smooth

functions ρ that satisfy ρφ ∈ A, ∀φ ∈ A. If A = D then B = E ; if A = E then B = E ; if A = S
then B = OM . (For more on OM and the other spaces see [10] or [8].) In the spaces with

thick points, if ρ ∈ B∗,a , then ρφ ∈ A∗,a , ∀φ ∈ A∗,a , and thus we may define the multiplication

ρf ∈ A′∗,a whenever f ∈ A′∗,a by the formula〈
ρ(x)f(x), φ(x)

〉
=

〈
f(x), ρ(x)φ(x)

〉
. (3.11)

On the other hand, if ρ ∈ B∗,a then the multiplication ρφ belongs to A∗,a for any φ ∈ A, and thus

we can define an operator of multiplication Mρ : A → A∗,a , and, by duality, a corresponding

multiplication operator Mρ : A′∗,a → A′. Observe that

π(ρf) = Mρ(f). (3.12)

Notice too that if ρ1, ρ2 ∈ B∗,a then we can perform the operation ρ1(ρ2f), which, naturally, turns

out to be (ρ1ρ2)f. However, the product Mρ1Mρ2 is not defined. This fact is at the root of the

H2 paradoxes in Sec. 2 (see Sec. 6).

If ρ ∈ E , then ρ(x)δ(x − a) = ρ(a)δ(x − a). The corresponding formula when there are thick

points is as follows:

ρ(x)δ∗,a,λ(x− a) = λρ(a+ 0)δ
(
x− (a+ 0)

)
(3.13)

+ (1− λ)ρ(a− 0)δ
(
x− (a− 0)

)
.

Thus Mρ

(
δ∗,a,λ(x− a)

)
=

[
λρ(a + 0) + (1 − λ)ρ(a − 0)

]
δ(x), and in particular Mρ

(
δ̃(x − a)

)
=

{ρ}δ(x − a), where {ρ} = 1
2

(
ρ(a+ 0) + ρ(a− 0)

)
is the average value at the thick point.



4 The Fourier transform in spaces with thick points

The Fourier transform of tempered distributions is a much studied and well-known operator.

One of the properties of the Fourier transform operator, F , is that it is an isomorphism of the

space of test functions, S, to itself as well as an isomorphism of the space of distributions, S ′,
to itself. When one considers the operator F in spaces of distributions that are contained in

S ′, say A′ ⊂ S ′, then f̂ = F(f) is a tempered distribution whenever f ∈ A′. However, when

A′ is not a space of tempered distributions, the image F(A′) will not be a space of tempered

distributions either. This is the situation in spaces with thick points, since S ′∗ is not a subspace

of S ′. Another example of this situation is the study of the Fourier transform in the space D′
done by Gel’fand and Shilov [9] ; see also [17] for a similar analysis of other integral transforms.

In this article we adopt the simplest definition of the Fourier transform: f̂(u) = F{f(x);u} is

given by the integral
∫∞
−∞ f(x)eixu dx when the integral exists and defined by duality or other

methods when the integral diverges. Naturally, our results will remain valid, modulo trivial

modifications, for all the variant conventions, and hence, in particular, for the inverse Fourier

transform,

F−1{f(x);u} = (2π)−1F{f(x);−u}.
If φ ∈ S∗ then its Fourier transform φ̂ is a smooth function, but it will not be of rapid decay at

infinity, in general. The behavior of φ̂(u) as |u| → ∞ follows from the Erdélyi asymptotic formula

[4], [8, Example 79], ∫ ∞

−∞
φ(x)eixu dx ∼ c1

u
+
c2
u2

+
c3
u3

+ · · · , |u| → ∞, (4.1)

where cn+1 = eπi(n+1)/2
[
φ(n)

]
. In fact [7, Thm. 8.4.1], a smooth function ψ belongs to F(S∗)

if and only if there exist constants c1, c2, c3, . . . such that ψ(x) ∼ ∑∞
n=1 cnx

−n as |x| → ∞.

Therefore, following [7, Chp. 6] we introduce the space W as follows.

Definition. The test-function space W consists of those functions ψ ∈ C∞(R) that admit an

asymptotic expansion of the type

ψ(x) ∼
∞∑

n=1

cnx
−n as |x| → ∞ (4.2)

for some constants c1, c2, c3, . . .. The space of distributionsW ′ is the corresponding dual space.

We can now define the Fourier transform of the distributions of the space S ′∗ .

Definition. If f ∈ S ′∗ then its Fourier transform f̂ = F(f) is the element of the space W ′

defined by 〈
f̂(u), ψ(u)

〉
=

〈
f(x), ψ̂(x)

〉
, ψ ∈ W. (4.3)

Similarly, if g ∈ W ′ then its Fourier transform ĝ = F(g) is the element of the space S ′∗ defined

by 〈
ĝ(x), φ(x)

〉
=

〈
g(u), φ̂(u)

〉
, φ ∈ S∗ . (4.4)



The Fourier transform is an isomorphism between the spaces S ′∗ and W ′, and between the

spaces W ′ and S ′∗ .

In order to understand the Fourier transform in these spaces, it is convenient to note several

properties of the space W ′. This space of generalized functions was introduced in [7] to study

the Hilbert transform of distributions. One of the most important characteristics of W ′ is that its

elements are not distributions over R but rather distributions over the one-point compactification

R = R∪{∞} . We denote by δ∞,j the element of W ′ given by

〈δ∞,j(u), ψ(u)〉 = cj (4.5)

when ψ ∈ W has the development (4.2). Any element g ∈ W ′ admits a “restriction” πg ∈ S ′,
but that restriction might vanish even if g does not, namely if g is “concentrated at ∞”, that is, if

it has the form

g(u) =
n∑

j=1

bjδ∞,j(u). (4.6)

Each g ∈ S ′ admits “extensions” g̃ ∈ W ′, but such extensions are not unique, since we could

always add a distribution of the form (4.6). Some tempered distributions admit canonical ex-

tensions to W ′, but there is no canonical way to extend all elements of S ′ to W ′. The extension

problem is rather similar to the regularization problem studied in [6].

Observe that when a tempered distribution g admits a canonical extension g̃ ∈ W ′, then its

Fourier transform F(g), which is an element of S ′, admits a canonical extension to the space

S ′∗ of distributions over the line with a thick point at x = 0, and this extension is precisely F(g̃).
If g is a distribution of compact support, g ∈ E ′(R), then the equation

〈g̃, ψ〉W ′×W = 〈g, ψ〉E ′×E (4.7)

defines a canonical extension. On the other hand, if g ∈ S ′ satisfies the estimate

g(u) = O (|u|α) (C), as |u| → ∞, (4.8)

in the Cesàro sense [5, 8], and α < 0, then g admits a canonical extension given by the Cesàro

evaluation

〈g̃, ψ〉W ′×W = 〈g, ψ〉 (C), (4.9)

which exists because g(u)ψ(u) = O
(|u|α−1

)
(C). Any tempered distribution g satisfies (4.8) for

some α ∈ R [5, 8], but if α > 0 the extension to W ′ is not canonical but depends on k arbitrary

constants if k − 1 ≤ α < k for some k ∈ {1, 2, 3, . . .}, much as a primitive of order k depends

on k arbitrary constants of integration.

Other tempered distributions that admit canonical extensions to W ′, obtained by analytic con-

tinuation, are the distributions uα
+ and uα− for α /∈ Z, the combination |ũ|α = ũα

+ + ũα− for

α = 0,±2,±4, . . . , and the combination sgnu |ũ|α = ũα
+ − ũα− for α ∈ C \ 2Z [7, Sec. 6.3].

Therefore the distribution ũn is defined for all integers. In particular, the tempered distribution

1 = |u|α|α=0 admits a canonical extension 1̃ = |ũ|α|α=0 ; this canonical extension is given by

the formula 〈
1̃, ψ (u)

〉
= p.v.

∫ ∞

−∞
ψ (u) du , (4.10)



the principal value being taken at infinity: p.v.
∫∞
−∞ = limA→∞

∫ A
−A . Alternatively,

〈
1̃, ψ(u)

〉
=

∫ 1

−1
ψ(u) du +

∫
|u|>1

(
ψ(u)− c1

u

)
du. (4.11)

5 Some Fourier transforms

We shall now give the Fourier transform of several distributions of the spaces W ′ and S ′∗ . Ob-

serve that if a distribution f0 of W ′ is an extension of a tempered distribution f of the space S ′,
then the Fourier transform f̂0 is an element of the space S ′∗ that extends the tempered distri-

bution f̂ . Similar remarks apply to the Fourier transform of the distributions of the space S ′∗ .

Let us start with the computation of F{
δ̃(x);u

} ∈ W ′. Observe that the equation
〈
δ̃(x), eixu

〉
=

1, while correct, just tells us that F{
δ̃(x);u

}
is a regularization in the space W ′ of the tempered

distribution 1. Therefore, we proceed as follows:〈F{
δ̃(x);u

}
, ψ(u)

〉
=

1
2

(
ψ̂

(
0+

)
+ ψ̂

(
0−

))
=

1
2

lim
x→0

(
ψ̂ (x) + ψ̂ (−x)

)
= lim

x→0

∫ ∞

−∞
cos xuψ(u) du.

We cannot set x = 0 in the last integral since that would produce a divergent integral. However,

we observe that
∫
|u|>1 cos xu du/u = 0 for x > 0 and thus obtain with (4.11)

〈
F

{
δ̃(x);u

}
, ψ(u)

〉
= lim

x→0

{∫ 1

−1
cos xuψ(u) du

+
∫
|u|>1

cos xu
(
ψ(u) − c1

u

)
du

}

=
∫ 1

−1
ψ(u) du +

∫
|u|>1

(
ψ(u) − c1

u

)
du

=
〈
1̃, ψ(u)

〉
,

so that

F
{
δ̃(x);u

}
= 1̃ . (5.1)

We can compute F {s0(x), u} in a similar fashion,

〈F {s0(x);u} , ψ(u)〉 = lim
x→0+

(
ψ̂(x)− ψ̂(−x))

= 2i lim
x→0+

∫ ∞

−∞
sinxuψ(u) du

= 2i lim
x→0+

{∫ ∞

−∞
sinxu

(
ψ(u) − c1

u

)
du

+c1
∫ ∞

−∞

sinxu
u

du

}
= 2πic1 ,



so that

F {s0(x);u} = 2πiδ∞,1(u). (5.2)

Formulas (5.1) and (5.2) immediately give

F {δ±(x);u} = 1̃± πiδ∞,1(u), (5.3)

where δ±(x) = δ(x− (0±0)). Formulas (5.3), in turn, yield the following limits in the space W ′ :

eiu0± = lim
x→0±

eiux = 1̃± πiδ∞,1(u). (5.4)

If we now use the fact that F−1{f(u);x} = (2π)−1F{f(u);−x}, we obtain the formulas

F{
1̃;x

}
= 2πδ̃(x), (5.5)

F {δ∞,1(u);x} = is0(x). (5.6)

Relation (5.6) can also be obtained from the Erdélyi asymptotic formula (4.1): If ψ = φ̂, φ ∈ S∗ ,

then

c1 =
〈
δ∞,1(u), ψ(u)

〉
=

〈
δ∞,1(u), φ̂(u)

〉
=

〈F {δ∞,1(u);x} , φ(x)
〉
,

but according to Erdélyi’s formula c1 = i〈s0(x), φ(x)〉, so (5.6) follows.

The usual formulas for the computation of the Fourier transforms of derivatives need to be

modified in our context, since the product of a function ψ(u) of the space W by the function u

does not belong to W, in general. Therefore, we introduce the modified multiplication operator

Mu : W →W and its adjoint M ′
u : W ′ →W ′ as

Mu(ψ) = uψ(u) − c1 (5.7)

and, of course, 〈M ′
u(g), ψ〉 = 〈g,Mu(ψ)〉. Then we shall see that if f ∈ S ′∗ , then

F {
f ′(x);u

}
= −iM ′

uF{f(x);u}. (5.8)

Indeed, if ψ ∈ W, then denoting with a bar the distributional derivative in the space S ′ of

tempered distributions, and by [φ] the jump of φ at the origin, we have by (3.5)

d

dx
ψ̂(x) =

d

dx
ψ̂(x)− [

ψ̂
]
δ(x)

= iF{uψ(u);xt} − [
ψ̂

]
δ(x)

= F{
iuψ(u) − [

ψ̂
]
/2π;x

}
= F{iMu(ψ);x},

and (5.8) follows by duality.

Similarly, if g ∈ W ′ then

F{M ′
ug(u);x} = −i d

∗

dx
F{g(u);x}. (5.9)

Observe that M ′
u

(
δ∞,j(u)

)
= δ∞,j+1(u). Hence by (5.6)

F{sj(x);u} = (−1)jF{
s
(j)
0 (x);u

}
= 2πij+1δ∞,j+1(u), (5.10)



F{δ∞,j(u);x} = (−i)j−1sj−1(x) = ij−1s
(j−1)
0 (x). (5.11)

Notice thatM ′
u(f) is related to the multiplication uf(u), but it is not the same, even if the product

is well-defined. For instance, uδ(u) vanishes, but M ′
u

(
δ(u)

)
= −δ∞,1(u) since〈

M ′
uδ(u), ψ(u)

〉
=

〈
δ(u),Muψ(u)

〉
=

〈
δ(u), uψ(u) − c1

〉
= −c1 .

This gives us yet another proof of (5.6), since it yields by (3.8) that

δ̂∞,1(x) = i
d∗

dx
F{δ(u);x} = i

d∗

dx
1 = is0(x).

It is interesting to observe that if g is a tempered distribution that satisfies the estimate g(u) =
|u|α (C), as |u| → ∞, for some α < 0, then g can be considered as an element of W ′ in a

canonical way, and its Fourier transform is the canonical extension from S ′ to S ′∗ of the usual

Fourier transform ĝ ∈ S ′. However, considering the transform in the spaces W ′ and S ′∗ may

prove to be useful. For instance, let us consider the distribution f(x) = F{ũ−1;x}. Using (5.9)

it follows that f satisfies the differential equation d∗f/dx = iF{
1̃;x

}
= 2πiδ̃(x), which has a

unique solution in S ′∗ , given by f(x) = πi sgn x; this is the usual Fourier transform of u−1, of

course.

6 Some answers

We can now address the puzzles in Section 2.

In the space D′∗ the multiplication by H is always defined, and if f ∈ D′∗ then Hf ∈ D′∗ too.

Observe in particular the formulas

H(x)δ∗,a,λ(x) = λδ+(x), (6.1)

H(x)δ+(x) = δ+(x), (6.2)

H(x)δ−(x) = 0, (6.3)

H(x)δ̃(x) = 1
2δ+(x). (6.4)

Observe also that

H(x)(H(x)f(x)) = H(x)f(x), (6.5)

since H2 = H in the space E∗ . We can also consider the multiplication projection operator

MH : D′∗ → D′. The formula

MH

(
δ̃(x)

)
= 1

2δ(x) (6.6)

is well-defined and correct.

The often used but ill-defined formulas (2.5) and (2.6) are loose formulations of (6.6). Indeed,

in many contexts one deals with a Dirac delta function (call it f(x)) that is a distribution in the

space D′∗ , whose projection onto D′ is the usual Dirac delta function, and, very importantly,

that is symmetric with respect to the origin, f(−x) = f(x). Then if f is of the first order, we

should have f(x) = δ̃(x). Formula (6.6) then follows, and in that sense (2.5) and (2.6) are



vindicated. However, the symmetry of f is not true a priori, and if f turns out to be δ∗,a,λ(x),
then

MH(δ∗,a,λ(x)) = λδ(x), (6.7)

which can be translated loosely as

“H(x)δ(x) = λδ(x). ” (6.8)

Of course, one really should always use (6.6) or (6.7), not (2.6) or (6.8).

Let us reappraise the alleged proof of (2.6) in Sec. 2. The problem with it is that one must be

precise and consistent in saying in which space of functions or distributions one is working.

Indeed, if we understand (6.5),

H(x)H(x) = H(x), (6.9)

as an equation in the test-function space E∗ , then we obtain

2H(x)
dH(x)
dx

=
dH(x)
dx

, (6.10)

where dH(x)/dx is the derivative in the space E∗ — that is, the ordinary derivative of H. But

that ordinary derivative is dH(x)/dx = 0, and thus (6.10) is true trivially because it says that

“0 = 0”. On the other hand we may consider (6.9) as an equation in the space D′∗ , but in that

case the second H on the left side and the H on the right side are elements of D′∗ while the

first H is an element of E∗ . Thus it is a good idea to rewrite it as

H(x)H̃(x) = H̃(x), (6.11)

where H̃ is H as an element of D′∗ . Then denoting the derivative in D′∗ with a star, we obtain

dH(x)
dx

H̃(x) +H(x)
d∗H̃(x)
dx

=
d∗H̃(x)
dx

. (6.12)

Here the first derivative is the ordinary derivative, which is 0, while the distributional derivative

in the space D′∗ is
d∗H̃(x)
dx

= δ+(x), (6.13)

and therefore we obtain (6.2), which of course is true — but contains no factor 1
2 . Finally, (6.9)

cannot be considered in the space D′ (because H is not in the right Moyal algebra, E), and

thus the usual distributional differentiation in D′ is not valid. Thus it is not possible to prove in

this way that λ in (6.7) must equal 1
2 . (In particular, it is not legal to multiply by H again and

conclude that 1
2 = 1

4 , etc., as we were tempted to do in Sec. 2.)

Now we return to the integral (2.1). Of course it is a Fourier transform, but since it is classically

divergent we need to say in which space we are working, or, what is the same, which regular-

ization of the function 1 we are using. If we work in W ′ and, consequently, look for a result in



S ′∗ , it is natural because of symmetry arguments to consider the regularization 1̃. Hence,∫ ∞

0
cos(2kx) dx =

1
2

∫ ∞

−∞
cos(2kx) dx

=
1
2

∫ ∞

−∞
e2ikx dx

=
1
2
F{

1̃; 2k
}

= πδ̃(2k)

=
π

2
δ̃(k).

The result (π/2)δ̃(k) holds for k positive or negative. If we want the result for k > 0 in the space

S ′, we need to apply the projection multiplication MH : S ′∗ → S ′ ; that is we need to multiply by

the Heaviside function. Use of (6.6) then yields

H(k)
∫ ∞

0
cos(2kx) dx =

π

2
MH

(
δ̃(k)

)
=
π

4
δ(k). (6.14)

That is, both (2.2) and (2.4) are correct, depending upon context! A pragmatic statement,

avoiding abstract spaces, is that the definition of a delta function located at an endpoint of

the interval of integration is a matter of convention ((2.5) versus the standard equation without

the 1
2 ; or, MH(δ̃) versus δ in the notation of this section). Having chosen a convention, one must

stay with it throughout a calculation. In particular, when an integral like (2.1) arises, one must

be careful to evaluate it in terms of δ using the convention chosen. In the original application [3],

it was found that the most convenient conventions were to interpret δ(k) as 2H(k)δ̃(k) (so that

(2.4) is correct), but, in the conjugate variable, to interpret δ(x) as H(x)δ̃(x). The consistency

of all results could then be checked.
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