
Lecture 11

The Rest on Polynomials

This week we finish our study on polynomial rings. If you have not already
done so, be sure to download my article on factoring over the rationals,
reals, and complexes. It can be downloaded from the assignment page in
the reading section for this course or from my home page. I’m not going to
say any more about it as I wrote it to be self-contained for undergraduates.
Instead I will look more at sections 9.3-9.5.

9.3 An important corollary to Gauss’ Lemma is that, if p ∈ Q[x] is reducible,
then it is reducible in Z[x]. In particular, by contrapositive, if p ∈ Z[x] is
irreducible, it is irreducible over the rational numbers. Notice that 2x is
reducible over Z because 2 is not a unit, but is irreducible over Q because
2 is a unit in Q. So the converse if false unless the gcd of the coefficients is
1 (see Corollary 6). If is sufficient, but not necessary, that a polynomial is
monic for the gcd of the coefficients to be 1.

The main corollary of Gauss’ Lemma is that R is a UFD if and only if R[x]
is a UFD.

9.3.1: Let R be an integral domain with quotient field F . Let p(x) be a monic
polynomial in R[x]. Suppose that p(x) = a(x)b(x) where a(x), b(x) are monic
polynomials in F [x] of smaller degree than p. Suppose that a(x) /∈ R[x]. By
Gauss’ Lemma, if R is a UFD, then p is reducible in R[x], whence p(x) =
f(x)g(x) = a(x)b(x) where ra(x) = f(x) for some r ∈ R. By the proof of
Gauss’ Lemma, each prime that divides the least common denominator of
the coefficients of a(x) and b(x) must divide either a(x) or b(x). But a(x) is
monic, so divisible only by units in R, whence r = 1 and a(x) = f(x) ∈ R[x].
Contradiction. Therefore, R is not a UFD.

9.3.4: Let R = Z + xQ[x] ⊂ Q[x].

9.3.4a: Since R is a subring of an integral domain, R is an integral domain.
Any unit in R is a unit in Q[x], so is a constant. The only units in Z are ±1.
Thus the only units in R are ±1.
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9.3.4b: By definition, ±p, p a prime integer, are irreducible in R. If f =
c+xg(x) ∈ R , then f = c(1+c−1xg(x) is reducible unless c = ±1. Therefore
all irreducibles are ±p,±1 + xg(x).

Suppose p|(c + xg(x))(d + xh(x)) = cd + xf(x). Then p|cd, so p|c or p|d.
Since p is a unit is Q, p|xg(x) and p|xh(x). Therefore p divides one of the
factors and is prime. If 1 + xf(x)|(c + xg(x))(d + xh(x)) = cd + xq(x), then
the factorization holds in Q, whence 1 +xf(x) divides one of the factors and
is prime.

9.3.4c: Suppose x = (c + xg(x))(d + xh(x)) = cd + (ch0 + dg0)x + · · · . Since
the degree of x = 1, the degrees of g(x), h(x) are 0, 1 in some order. We may
assumeg(x) = c, h(x) = d + ex. Then x = c(d + ex) = cd + ex. Thus either
c = 0 or d = 0. But c 6= 0, so d = 0, whence cx = 1 and c = 1. But we
already showed that x is not one of the irreducibles. Therefore, R is not a
UFD.

9.3.4d: Note that x = 2(x/2). Since the degree of 2 is 0, and the degree
of x is one, x does not divide 2. If x/2 ∈ (x), then x/2 = ax. Since
R is an integral domain, we conclude that a = 1/2 ∈ R, a contradiction.
Therefore, x is not prime. This means that R/(x) is not an integral domain,
so certainly not equal to Z which would be our first guess. I claim that
R/(x) = {a+ bx+(x)|a ∈ Z, b ∈ Q, 0 ≤ b < 1}. We know that every element
of R/(x) is a + xp(x) + (x). Since qxi ∈ (x) for all q ∈ Q, i ≥ 2, we may
assume that an element of R/(x) is a + bx + (x) with a ∈ Z. Since nx ∈ (x)
for n ∈ Z, 0 ≤ b < 1 as claimed.

9.4 All of the theorems in this section are also in my handout, so I’ll simply
go on to some problems.

9.4.1a: Let f(x) = x2 + x + 1 ∈ F2[x]. Since f(0) = 1 = f(1), f(x) is
irreducible as it has no linear factors and is of degree 2.

9.4.1b: Let f(x) = x3+x+1 ∈ F3. Again, we need only look for linear factors.
f(0) = 1, but f(1) = 0 so f is reducible; in fact f(x) = (x + 2)(x2 + x + 2).

9.4.1c: Let f(x) = x4 + 1 ∈ F5[x]. Since f(0) = 1, f(1) = 2 = f(4), f(2) =
2 = f(3), there are no linear terms. Now we check for two quadratics and
may assume they are monic. x4 + 1 = (x2 +ax+ b)(x2 + cx+ d) = (x4 + (a+
c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd. Therefore, c = −a, bd = 1, a(d− b) =
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0,−a2 + b + d = 0. Since we are over a field, a = 0 or b = d. If a = 0 = c,
then b = −d, bd = 1. So b = 2, d = 3 and x4 + 1 = (x2 + 2)(x2 + 3), so is
reducible.

9.4.1d: Let f(x) = x4 + 10x2 + 1 ∈ Z[x]. Since ±1 are the only possible
rational roots, f(x) has no linear term. Let y = x2. Then f(y) = y2+10y+1.
From what we found in part c, a+ c = 0, ac+ b+ d = 10, ad+ bc = 0, bd = 1.
Thus, c = −a, b = d = ±1,−a2 ± 2 = 10. But a2 = 8, 12 have no rational
solutions. Therefore, f is irreducible.

9.4.3: Let f(x) = (x− 1)(x− 1) · · · (x− n)− 1. Suppose f(x) = a(x)b(x) ∈
Z[x]. Then a(i)b(i) = −1 for i = 1, 2, ..., n , whence a(i) = −b(i) ∈ {−1, 1}.
Let A = {i|a(i) = −1} and B = 1, 2, · · · , n − A, so b(i) = −1 for i ∈ B.
Then a(x) = Πi∈A(x − i) − 1 and similarly for b. Thus f(x) = (Πi∈A(x −
i) − 1)(Πi∈B(x − i) − 1) = Πn

i=1(x − i) − Πi∈A(x − i) − Πi∈B(x − i) + 1 =
f(x)− (Πi∈A(x− i) + Πi∈B(x− i)) + 2. Thus Πi∈A(x− i) + Πi∈B(x− i) = 2, a
contradiction because the left-hand side has positive degree. Therefore, f(x)
is irreducible.

9.5 This section is a culmination of all we’ve been doing in group and ring
theory and introduces no new techniques. It simply pulls together theorems
from various sections and reaches powerful conclusions.

9.5.1: Let F be a field, and let f(x) ∈ F [x] have degree at least 1. We defined
the nilradical in the lecture on 7.3 as the set of nilpotent elements, i.e., the
set of r ∈ R such that rn = 0 for some positive integer n. In our current case,
let f = pn1

1 · · · pns
s be a factoring of f into non-associate irreducibles pi. If

q(x)t = 0 ∈ F [x]/(f(x)), then q(x)t ∈ (f(x)). Thus pi|q for all i. Therefore,
the nilradical of F [x]/(f(x)) is the set of polynomial rpm1

1 · · · pms
s where r is

not divisible by pi for any i. In practice we may assume that some mi < ni

otherwise the polynomial is zero in F [x]/(f(x)) anyway. This gives us a finite
number of generators for the nilradical.

3


