
Lecture 2

This week we concentrate on examples of groups and on lattice diagrams of
subgroups. Since the book assumes you’ve seen group theory before, I want
to clear up something left tacit that will be made specific in chapter 2.

Definition: A subgroup H of a group (G, ∗) is a non-empty subset of G
that is a group under ∗ as well. In particular, e ∈ H. If x, y ∈ H, then
xy ∈ H, and if x ∈ H, then x−1 ∈ H. We will see in chapter two that
these three conditions are enough to prove that a non-empty subset H is a
subgroup of G.

Notice that matrices are closed under addition if they are both m × n or
multiplication if n × n. But all n × n matrices do not form group under
multiplication because lots of matrices don’t have inverses. They do form a
group under addition, a necessary condition for the the set of n×n matrices
to be a vector space.

Since an n × n matrix with entries in a field is invertible if and only if its
determinant is non-zero, we can take the subset of invertible matrices and
call them GLn(F ), which is a group under multiplication.

There are lots of groups of matrices that are subgroups of the two main ones
listed. If this is new to you, please take a few minutes and play with some
matrices and see which ones form groups.

1.2 Dihedral Groups

The first examples of finite groups in the book come from the symmetries of
a regular n-gon. Since we can rotate the n-gon and have to do so n times
to get back to where we started, there is a rotation r for which rn = e and
rI 6= e for i = 1, 2, ..., n − 1, i.e., |r| = n. There is also a flip around a
vertex, which we will call s. Since flipping twice gets us back to the where
we started, |s| = 2. It ends up that all symmetries are products of these and
that there are 2n symmetries. We call this group of symmetries D2n in this
book. Spoiler alert: Some books call then Dn, so be careful when looking at
other books.
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The way I have listed the group is with generators and relations, but I didn’t
give all the relations. I left out rs = sr−1, a third relation which is all we
need. We’ll be doing a lot with generators and relations over the course, so
now is a good time to get used to working with them.

1.2 #4: Suppose n = 2k and that n ≥ 4. Note that z = rk 6= e and that
z2 = (rk)2 = r2k = e. Thus |z| = 2. Also, zri = rk+i = ri+k = rirk = riz and
zs = rks = sr−k = srk = sz, so z commutes with every element of D2n. If
b = sjri commutes with every element of D2n where j = 0, 1, i = 0, ..., n− 1,
then br = rb and bs = sb. If j = 0, then b = ri commutes with any rj but
ris = sr−i = sri implies that r−i = ri, so |b| = 2, whence i = k. If j = 1,
then b = sri. But sb = s2ri = ri and bs = sris = s2r−i so again i = k. But
rb = rsri = sri−1 and br = sri+1, which requires ri−1 = ri+1 or that e = r2,
contradicting that |r| ≥ 4. Therefore, z = rk is the only element other than
the identity which commutes with every element of D2n.

1.3 Symmetric Groups

The symmetric groups are a basic building block of finite groups. We will
see later that every finite group is isomorphic (essentially the same as up to
relabeling) a subgroup of some symmetric group. Being able to work with
the cyclic decomposition is very important and will be assumed, so practice
if it is new to you.

Since permutations are functions, they compose right to left so στ(1) =
σ(τ(1)), i.e., apply τ first and then σ. For example, if σ = (1 2 3) and
τ = (1 2), then στ(1) = σ(2) = 3 but τσ(1) = τ(2) = 1. So order matters.

1.3 #1: σ = (1 3 5)(2 4), τ = (1 5)(2 3). Notice that we don’t need to
put (4) in the cyclic expression for τ . σ2 = (1 5 3), στ = (2 5 3 4), and
τσ = (1 2 4 3). Notice that it is common to put the lowest number first in
the cycle, but (1 3) = (3 1) and so on.

1.3 #3 for question 1 above: The order is the least common multiple of the
lengths of the cycles in the disjoint cyclic decomposition, so |σ| = 6, |σ2| =
3, |τ | = 2, |στ | = 4 = |τσ|.

Notice that |D6| = |S3|. We will discover next week that they are isomorphic.
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It is not enough, however, for the orders to be the same to force an isomor-
phism. Remember that last week we showed that there were two different
groups of order four.

1.4 Matrix Groups

Since all of you have had linear algebra, I will not write more about matrix
groups than I did above.

1.5 Quaternion Group

For those of you who have seen quaternions over the reals in other classes,
you may think of the quaternion group as the basis for the quaternions just
as 1, i is a basis for the complex numbers over the reals. The quaternions
over the reals came about because Hamilton wanted to multiply vectors in
three space and couldn’t. One day he realized he could in four space if he
used the basis listed as the Quaternion Group. It is one of the basic groups of
order 8 and is not isomorphic to D8, as can be seen by counting the number
of elements of order 4.
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