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In 1916 S. N. Bernstein observed that every polynomial p having no zeros in
(—1,1) can be written in the form ¥¢_, a;(1—x)’(1 + x)¢~7 with all ¢;>0 or all
a;<0. The smallest natural number 4 for which such a representation holds is
called the Lorentz degree of p and it is denoted by d( p). The Lorentz degree d( p)
can be much larger than the ordinary degree deg( p). In this paper lower bounds are
given for the Lorentz degree of certain special polynomials which show the
sharpness of some earlier results of T. Erdélyi and J. Szabados. As a by-product, we
give a short proof of Markov and Bernstein type inequalities for the derivatives of
polynomials of the above form, established by G. G. Lorentz in 1963. The Lorentz
degree of trigonometric polynomials is also introduced and some analogues of our
algebraic results are established.  © 1991 Academic Press, Inc.

1. INTRODUCTION AND NOTATIONS

Denote by 11, the set of all real algebraic polynomials of degree at
most #. A Lorentz representation of a polynomial p is a representation
d
p(x)=Y a,(1—x)(1+x)?7 (D)
j=0
One of the interesting properties of this representation is that every polyno-
mial p, positive in (—1, 1), possesses a representation (1) with all ¢;> 0.
This was observed by S. N. Bernstein [1] in 1916. Another simple observa-
tion is that every polynomial p with integer coefficients has a representa-
tion (1) with all g, integers and in which d is equal to the degree of p. The
representation (1) turned out to be useful in different parts of approxima-
tion theory [4, 7, 8-107] and helped indirectly to inspire others [11, 127.
The classes

a

Pya, b)= {p:p(x) =Y a(b—x)/(x—a)? /withallg;>0orall g, < O}

j=0
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were introduced by G. G. Lorentz [9], who proved several interesting
approximation theoretic properties about them such as sharp Markov and
Bernstein type inequalities. The classes P,(—1, 1) were studied in [4] as
well. For a pell, having no zeros in (a, b) we defined its Lorentz degree
d;,51(p) as the minimal d for which pe P,(a, b) (this is a well-defined
natural number by the already mentioned observation of S. N. Bernstein).
If p#£0 vanishes in (g, b), then obviously there is no d such that
pe Py(a, b); in this case we say dp, ;7= co. Since we will work in [ —1,1]
mostly, we will use the abbrevation

d(p) ==dr_1.11(p). (2)
Observe that [4, p. 108]

diop1(P) Sdpapy(p)  if [, fle[a, b]. (3)

The magnitude of d(p) was examined in [4]. To formulate our main
theorem from [4] we need some notations. Let ¢(x) be a positive
continuous function on (—1, 1), and let

D(p)={z=x+iy:|y] <olx), |x| <1}
denote the domain of the complex plane determined by it. We introduce

L(p)={p:pel,, p(z) #0in D(¢)}
and

d ()= sup d(p).

peLyo)

In [4, Theorem 3] we proved the following
THEOREM A. If

1>¢:= inf o(x)

i<l /] —x?

then there exist absolute constants ¢, ¢, >0 such that

>0, 4)

2 4/3 ~ U] D ( / ) ‘(l
where a (|a| < 1) is a point where the mfimum in (4) is attained.

We remark that if e 1 in (4), then Theorem 5 from [4] shows that
d,(¢)=n. In this paper we show that the lower bound ¢, n/(2:6%?) in
Theorem A can be improved to c;n/e* which matches the upper bound.
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Let C be the open unit disk of the complex plane. In [4, Theorem 5] we
also proved the following.

TueoreM B. (i) If D(@)=C, then
d(p)=n  forall n=12, ... (5)
(i) If (5) holds for some n=2, then D(¢)=2C.

Thus the functions ¢ for which d,(¢)=n are completely characterized.
To characterize those polynomials p for which d{(p)=deg(p) (where
deg( p) denotes the ordinary degree of p) seems to be much more difficult.
Here we show that a polynomial p satisfying d(p)=deg(p) can have
arbitrarily many prescribed zeros outside (—1, 1).

As a by-product, in Section 6 we give a short proof of Markov and
Bernstein type inequalities for the derivatives of polynomials from
P,(—1, 1), established by G. G. Lorentz [9] in 1963.

The Lorentz degree of trigonometric polynomials was introduced in [5].
Some trigonometric analogues of our algebraic results are obtained in
Section 7.

Finally, we present some conjectures in Section 8.

2. NEw RESULTS

We improve Theorem A by

THEOREM 1. If

then

where 0 < ¢, < ¢, are absolute constants.

Our next theorem shows that a polynomial p satisfying d{ p)= deg(p)
can have arbitrarily many prescribed zeros outside (—1, 1).

TueorREM 2. If ge T \IT,_ has no zeros in (—1, 1), zeC, |z| > 1, and
p(x)={(x—2)(x—2))" q(x), then d(p)=deg(p)=k+2m if m is large
enough.
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3. LEMMAS FOR THEOREM 3

To prove Theorem 3 we need some lemmas.
LEMMA 1. Let peP,(—1, 1), 1<n<dand 0<a<1. Then

(2 <o (o-3)

where c, is an absolute constant (i is the imaginary unit).

<< ,

LeMMA 2. We have
pb)y<dp(b) (0<b<1)
for every polynomial pe P, (—1, 1), positive in (—1,1).
LeMmA 3. Let
p(x)=((x—a)*+e(1—a®))" (—1<a<1,0<e<]).

Then d(p) = csnfe® with some absolute constant cs> 0.

4. PROOFS OF THE LEMMAS FOR THEOREM 1

Proof of Lemma 1. Let pe Py(—1,1); that is, let p(x) =
J 0 ¢;(1—x)/(1+x)?~/ with all a,>0 or all a; < 0. Hence it is sufficient
to prove the inequality of the lemma only for the polynomials

gq;(x)=(1—x)(1+x)4/ (j=0,1,..4d). (6)
We have

9, <a T @f)

<(1—a)ua(l_az))m<(1+a)2+%(1_a2)>u~,-)/2
(a-a+g) (a+ar 4”d>dj
2B s
<au (e=ig)1-3) " <taus (o= 1)

thus the lemma is proved. ||

I

A
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Proof of Lemma 2. Since pe P, (—1,1), is positive in (—1, 1), it is of
the form
d
p(x)=Y a;q,,(x) withall 4,20,

j=0

where the polynomials g, ; (0 < j< d) are defined by (6). For 0<b <1 we
have
. _ d—j .
00 (0)=40,0) (75— 75 ) <) (=01 ()

Multiplying the above inequality by a;>0 and adding them up, we obtain
p'(b) < dp(b), which proves the lemma. J

Proof of Lemma 3. Without loss of generality we may assume that
0 <a< 1. We distinguish two cases.

Case 1. 1—2¢*<a<1. Then by Lemma 2 we have
p'(1) 2n(l —a) 2n n

A~ A ar el —a) (—a)telita) 2

thus the lemma is proved.

Case 2. 0<a<1—2¢% First we show that this implies

d(p)= . (8)
e/1—a*
To show this let b=a+¢./1 —a?< 1. By Lemma 2 we have
"(b 2n(b—a 2n
dp LD oD
pb) (b—a)y+e(1—a*) ¢ /1-a’+e/1-d
_ n
e/1—a
which proves (8). Further, by Lemma 1 we obtain
(1_a2)nn nz n
1—a?)e?—21—— T e 212
(- - S <a(a-drrgs). o)

where d=d(p) and n=}deg(p). If (1 —a?*)e*> (1 —a?)n/(8d), then there
is nothing to prove. Therefore we may assume that

(1—-a%)n

1_ 2 2<
(1—a%)e Y

(10)
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Now (9) and (10) yield

(1_a2)n n ., o 2 nZ n
(——————8d <cil (1—a)s +16d2 .

Taking the nth root of both sides we obtain

1—aHn n?
(__82)_<C4<(1—a2)82+ 16d2), (11)
From (8) we deduce
n2
Ezs(l—az)ez- (12)
Now (11} and (12) imply
1—a*)n 17
Ll e -, (13)
whence
2 csh
d>‘ﬁ ;! == ’(:Tr

thus the lemma is proved. ||

5. PrOOF oF THEOREMS 1 AND 2

Proof of Theorem 1. 1If >3, then the obvious inequality d,(¢)>n>
n/(4¢?) gives the desired result. If 0 <& <4, then let {a;} | be such that

(P(aj) 1 .
—L— < = —— =1,2,..).
Ji—-a ’ J+1 G )

This implies that
pi(x)=((x—a)*+&(1—a})) € Ly(0);
therefore

csn csh

Ll @) 2 T =TGR

J

Since this holds for every j=1, 2, .., the lower bound of the theorem is
proved. The upper bound follows from Theorem A. ||

Proof of Theorem 2. Let qe II\II,_, be of the form

&
g(x)=Y a;(1—=x)/(1+x)*~7 with some real coefficients, (14)
j=0
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and we define the polynomials
k

Q)= Y a;a(l—x)) (B(1+x))* . (15)

j=0

It is easy to see that in case of >0 and >0, 4, has no zeros in (—1, 1)
if and only if

Q)= 3, a;,u’ (16}

has no zeros in (0, ). Since g :=g, , € IT,\I1, _, has no zeros in ( —1, 1),
neither does g,-1 5-1 for every « >0 and B> 0. Hence by Bernstein’s resuit
[1] (which is a corollary of our Theorem 1), we obtain that

1+x 1—x\m *kim . .
Got1,p-1(X) ( ) Z erml L —x) (1 4 x)frm—
with all ;. ,,>0 or all ¢, ,,<0 if m is sufficiently large. This yields
k+m
GxNoe(l—x)+ (1 +x))"= 3 27a/f+ " a, (1= x) (L4 x)<tm—
Jj=0
k+m )
= Y Appmll—x) (14 x5 (17)
j=0

withall 4;,,,,>0orall 4,, ., <0 if mis large enough. From (17) we can
easily deduce that for every a>0, >0, and y>0

0e) (o1 = x)% + (1 = x)(L +x) + (1 +x)*)"

:q(x)(“"x)<°‘( ”ﬁ(”x)) 1+X><ﬁ(1~x)+y(1+x)>>m

= ¢(x) é (”;) (1 —x)’(oz(l —x)+§ (1 +x))l

«(1 +x)m-’<§ (1= x)+ (1 +x>)m“
k+2m
=3 Bjiqom(1—x) (1 4 x)F+2m=7 (18)
—0

with all B, ;. ,,>0 or all B, ,, <0 if m is large enough. A straight-
forward calculation shows that |z| > 1 (ze C) implies that

(x—z)x—2)=o(l —x)* + (1 —x)(1 + x) +p(1 + x)*

640/67/2-6
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with o« = (14+2Rez+[z%)/4 >0, B=(z>-1)2>0, and y =
(1—2Re z+|z|?)/4>0; hence (18) shows that dg(x)((x—z)(x—2))") <
k +2m if m is large enough. Since d( p) > deg( p) for every polynomial, this
yields

d(q(x)((x —z)(x — 2))") = k + 2m = deg(q(x)((x — z)(x — 2))™)
if m is large enough. Thus the theorem is proved. ||

6. MARKOV AND BERNSTEIN TYPE INEQUALITIES FOR DERIVATIVES OF
POLYNOMIALS FROM P,(—1,1)

In 1963 G. G. Lorentz [9] proved the following.

Tueorem C. We have

IP('"’(a)|<cG(m)<min{ \/6—[ ,d})m max | p(x)] (—1<ax)

/1—a? -1<x<1

for every polynomial pe P,(—1, 1), where c¢(m) depends only on m.

Relying on Lemma 1 we give a short proof of the above theorem.

Proof of Theorem C. For the sake of brevity, let

44a) @11 Cicas (19)

- r —lsxas
+(a)=max \/:1 '
and denote by S,(a) the circle of the complex plane with center a and
radius }4,(a). By a slight modification of the proof of Lemma 1, we have

lp(z)l < ¢y omax |px)]  (z€84(a), —1<a<]). (20)

Hence by Cauchy’s integral formula

p(&)

G—ay 1 ||

(g
(@) <3 jw)

% 0 7 dufa)(du(a)) ="V, max | p(x)

2 —l<x<l

scé(m)<min{ N ,d})m max | p(x)|

1—4g> —1<sx<1

(—1<a<l) (21
Thus the theorem is proved. ||

The sharpness of Theorem C was shown in [3] up to the constant c4(m).
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7. LORENTZ DEGREE IN THE TRIGONOMETRIC CASE

With J. Szabados [5] we introduced the classes _(«, 8)
(—m<a< B <n) as the family of trigonometric polynomials of the form

20
t -
p()=Y a sm’ﬁ smz"ﬂT

Jj=0

(22)

with all @;> 0 or all a;<0. For the sake of brevity let 7 (w) =7 (-, )
O<w< n) For 0 <w<n/2 we proved that a trigonometric polynomial
p#O0isin |J, .y Z,(w) if and only if p has no zero in {(—w, ®). We also
proved that in case of n/2 < w <= this is not true any more. Similarly to
the algebraic case, we introduced the Lorentz degree o, ., (p) as the
smallest natural number ¢ for which p is of form (22) with a= —w and
B=w; 6 _, o7 := o if there is no such representation. To formulate one of
our main results from [5] we need some notations. Let ¢{x) be a positive
continuous function in (—w, w) and

Dy(@)={z=x+1iy: |yl <o(x), ~w<x<w}.

We introduce

L(p)={peT, p(z)#0ifze D (¢)},

where T, is the family of all real trigonometric polynomials of degree at
most 7. Finally we define

an,w(q)) = Sup 6[—w,w](p)'

pe Lulg)

In [5] we proved

THEOREM D. Let O0<w < n/2. Then

2 2

o',,,m((p)Sn( +2tana)+1)

su
COS O |4 2o (a)2

On the other hand we have

‘ (0% — a?)?
(1) 0, .(@)=cen sup ———-,
’ ’ la] < w’p(a)’

) (1/w) tan w(w?—a?)
(i) 0,u(@)=>con P Sinh? (a) + (@ — @) (1ja?)
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and

w? — a?

() nal@) > cron SUP ot Sinh o(@) + (@ — &)ja)

with some absolute constants cg>0, ¢4 >0, and ¢,,>0.

We conjectured the following.

THEOREM 3. In case of 0 <w < 1/2 we have
o’ —a’ Ciaht »* - a?
cynl| sup —*+1><an,w((p)<——(sup ———+1>, (23)
H (lal<m q)(a)Z \COSCL) lal<w (P(a)2

“where ¢y, and cq, are absolute constants.

Proof of Theorem 3. The upper bound comes from Theorem D
immediately. The lower bound can be obtained by a straightforward
modification of the proof of Theorem 1. |

Let
D={z=x+iy: —a<x<mn}
and
D,={z=x+iy:coswcosh y<cosx, —n<x<m}.
In [5, Theorem 5] we proved
THEOREM E. Let 0 <w <m/2.
(i) If D,(p)=D,,, then
0,.(@)=n  forall n=1,2,.. (24)
(i) If (24) holds for some n= 1, then D (0)2D,,.

Thus the functions ¢ for which ¢, (@) =rn are completely characterized,
similarly to the algebraic case. The next theorem shows that a
trigonometric polynomial satisfying o ,, ,7(p)=deg(p) can have
arbitrarily many prescribed zeros outside (—w, @) if 0 < w < r/2.

THEOREM 4. Let O <w <mn/2, ze D\D,,, and assume that ge T\T,_,
does not vanish in (—w, ). Then for the trigonometric polynomial p(x)=
(sin((x — 2)/2) sin((x — 2)/2))™ q(x) we have 0| _,, ,1(p) =deg(p)=k+m if
m is large enough.
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The above theorem can be proved by a straightforward modification of
the proof of Theorem 2, by using the identity

1 ! 2214 2 cos @ sin S si w+t+sin2w+t>:[m
= sin os n — .
sin® w 2 2 2 2

The condition 0 < w < /2 in Theorem 4 is important. If n/2 <w <n and
pe T, has all its zeros in D, then o;_,, ,(p)=co. This follows easily
from Theorem 2b of [5].

8. COMMENTS

Markov and Bernstein type inequalities for the derivatives of
trigonometric polynomials from Z,(w) were established in [6, Theorem 3;
2, Theorem 1; 3, Theorem 1]. Short proofs of some of these results can be
given similarly to the proof of Theorem 5. We omit the details.

Related to the lower bound of Theorem ! the following question arises
naturally. Is it true that d(p) > cn/e* (0 <e< 1) for every algebraic polyno-
mial p of degree n having no zeros outside the open ellipse with large axis
(—1,1) and small axis (—e&i, &i), where ¢ is an absolute constant? This
problem seems to be hard and is open at the moment.

The following example shows that d( pg) < max{d(p), d(¢)} can happen.
Let p(x)=(1—-x)*=2(1—x)1+x)+4(1+x)* and g{x)=(1+x)+
1 —x). Then d(p)=4, d(qg)=1, and d(pq)=3. Can we estimate d(pq)
from below in terms of d(p) and d(g)? Maybe min{d(p), d(g)} or
ld(p)— d(q)| works. Such lower bounds for d( pg) would be interesting to
obtain.
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