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Abstract. Denote by span{f1, f2, . . . } the collection of all finite linear combinations of the

functions f1, f2, . . . over R. The principal result of the paper is the following.

Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0,∞) and for compact sets

A ⊂ [0, 1] with positive lower density at 0). Let A ⊂ [0, 1] be a compact set with positive

lower density at 0. Let p ∈ (0,∞). Suppose (λj)
∞

j=1
is a sequence of distinct real numbers

greater than −(1/p) . Then span{xλ1 , xλ2 , . . . } is dense in Lp(A) if and only if

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Moreover, if
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ ,

then every function from the Lp(A) closure of span{xλ1 , xλ2 , . . . } can be represented as an

analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}

(m(·) denotes the one-dimensional Lebesgue measure).

This improves and extends earlier results of Müntz, Szász, Clarkson, Erdős, P. Borwein,
Erdélyi, and Operstein. Related issues about the denseness of span{xλ1 , xλ2 , . . . } are also

considered.
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1. Introduction and Notation

Müntz’s beautiful classical theorem characterizes sequences (λj)
∞
j=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space span{xλ0 , xλ1 , . . .} is dense in C[0, 1]. Here, and in what follows,
span{xλ0 , xλ1 , . . .} denotes the collection of finite linear combinations of the functions
xλ0 , xλ1 , . . . with real coefficients, and C[a, b] is the space of all real-valued continuous
functions on [a, b] ⊂ R equipped with the uniform norm. Müntz’s Theorem [Bo-Er3,
De-Lo, Go, Mü, Szá] states the following.

Theorem 1.1 (Müntz). Suppose (λj)
∞
j=0 is a sequence with

0 = λ0 < λ1 < λ2 < · · · .

Then span{xλ0 , xλ1 , . . .} is dense in C[0, 1] if and only if
∑∞

j=1 1/λj = ∞.

The original Müntz Theorem proved by Müntz [Mü] in 1914, by Szász [Szá] in 1916,
and anticipated by Bernstein [Be] was only for sequences of exponents tending to infinity.
The point 0 is special in the study of Müntz spaces. Even replacing [0, 1] by an interval
[a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. This is, in large measure, due
to Clarkson and Erdős [Cl-Er] and Schwartz [Sch] whose works include the result that if∑∞

j=1 1/λj < ∞ then every function belonging to the uniform closure of

span{xλ0 , xλ1 , . . .}

on [a, b] can be extended analytically throughout the region {z ∈ C \ (−∞, 0] : |z| < b}.
There are many variations and generalizations of Müntz’s Theorem [An, Be, Boa, Bo1,

Bo2, Bo-Er1-Bo-Er7, B-E-Z, Ch, Cl-Er, De-Lo, Go, Lu-Ko, Op, Sch, So]. There are
also still many open problems. In [Bo-Er6] it is shown that the interval [0, 1] in Müntz’s
Theorem can be replaced by an arbitrary compact set A ⊂ [0,∞) of positive Lebesgue
measure. That is, if A ⊂ [0,∞) is a compact set of positive Lebesgue measure, then
span{xλ0 , xλ1 , . . .} is dense in C(A) if and only if

∑∞
j=1 1/λj = ∞. Here C(A) denotes

the space of all real-valued continous functions on A equipped with the uniform norm. If
A contains an interval then this follows from the already mentioned results of Clarkson,
Erdős, and Schwartz. However, their results and methods cannot handle the case when,
for example, A ⊂ [0, 1] is a a Cantor type set of positive measure.

In the case that
∑∞

j=1 1/λj < ∞, analyticity properties of the functions belonging to

the uniform closure of span{xλ0 , xλ1 , . . .} on A are also established in [Bo-Er6].
From Theorem 1.1 we can easily obtain the following Lp[0, 1] version of the Müntz

Theorem.

Theorem 1.2 (Müntz). Let p ∈ (0,∞). Suppose (λj)
∞
j=0 is a sequence with

0 ≤ λ0 < λ1 < λ2 < · · · .

Then span{xλ0 , xλ1 , . . .} is dense in Lp[0, 1] if and only if
∑∞

j=1 1/λj = ∞.

The main result of this paper is the following.
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Theorem 1.3 (Full Müntz Theorem in Lp(A) for p ∈ (0,∞) and for compact sets
A ⊂ [0, 1] with positive lower density at 0). Let A ⊂ [0, 1] be a compact set with
positive lower density at 0. Let p ∈ (0,∞). Suppose (λj)

∞
j=1 is a sequence of distinct real

numbers greater than −(1/p) . Then span{xλ1 , xλ2 , . . .} is dense in Lp(A) if and only if
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Moreover, if
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ ,

then every function from the Lp(A) closure of span{xλ1 , xλ2 , . . .} can be represented as an
analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}
(m(·) denotes the one-dimensional Lebesgue measure).

This corrects, improves, and extends earlier results of Müntz [Mü], Szász [Szá], Clarkson
and Erdős [Cl-Er], P. Borwein and Erdélyi [Bo-Er3, Bo-Er4], and Operstein [Op]. Related
issues about the denseness of span{xλ1 , xλ2 , . . . } are also considered.

The notations

‖f‖A := sup
x∈A

|f(x)| ,

‖f‖Lp,w(A) :=

(∫

A

|f(x)|pw(x) dx
)1/p

,

‖f‖L∞,w(A) := inf{α ∈ R : |f(x)|w(x) ≤ α a.e. onA} ,

‖f‖Lp(A) :=

(∫

A

|f(x)|p dx
)1/p

‖f‖L∞(A) := inf{α ∈ R : |f(x)| ≤ α a.e. onA} ,
are used throughout this paper for real-valued measurable functions f defined on a mea-
surable set A ⊂ R with positive Lebesgue measure, for nonnegative measurable weight
functions w defined on A, and for p ∈ (0,∞). The space of all real-valued continuous func-
tions on a set A ⊂ R equipped with the uniform norm is denoted by C(A). For 0 < p ≤ ∞
the space Lp,w(A) is defined as the collection of equivalence classes of real-valued mea-
surable functions for which ‖f‖Lp,w(A) < ∞. The equivalence classes are defined by the
equivalence relation f ∼ g if fw = gw almost everywhere on A. When A := [a, b] is a
finite closed interval, we use the notation Lp,w[a, b] := Lp,w(A). When w = 1, we use the
notation Lp[a, b] := Lp,w[a, b]. It is always our understanding that the space Lp,w(A) is
equipped with the Lp,w(A) norm. Denote by span{f1, f2, . . .} the collection of all finite
linear combinations of the functions f1, f2, . . . over R.

The lower density of a measurable set A ⊂ [0,∞) at 0 is defined by

d(A) := lim inf
y→0+

m(A ∩ [0, y])

y
.
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2. Auxiliary Results

In [Bo-Er3, Section 4.2], [Op], and partially in [Bo-Er4] the following two theorems are
proved.

Theorem 2.1 (Full Müntz Theorem in C[0, 1]). Suppose (λj)
∞
j=1 is a sequence of

distinct positive real numbers. Then span{1, xλ1 , xλ2 , . . .} is dense in C[0, 1] if and only if

∞∑

j=1

λj

λ2
j + 1

= ∞ .

Moreover, if
∞∑

j=1

λj

λ2
j + 1

< ∞ ,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . .} is infinitely many
times differentiable on (0, 1).

Theorem 2.2 (Full Müntz Theorem in Lp[0, 1] for p ∈ [1,∞)). Suppose p ∈
[1,∞). Suppose (λj)

∞
j=1 is a sequence of distinct real numbers greater than −(1/p) . Then

span{xλ1 , xλ2 , . . .} is dense in Lp[0, 1] if and only if

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Moreover, if
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ ,

then every function from the Lp[0, 1] closure of span{xλ1 , xλ2 , . . .} is infinitely many times
differentiable on (0, 1).

Unfortunately each of the works mentioned above has some shortcomings in proving
the sufficiency part of Theorem 2.2. Hence in Section 4 we present the correct arguments
to prove the sufficiency part of Theorem 2.2. This part is based on discussions with Peter
Borwein.

Theorems 2.3 and 2.4 are restatements of some earlier results giving sufficient conditions
for the non-denseness of span{xλ1 , xλ2 , . . .} in Lp[0, 1] when 0 < p < ∞ and (λj)

∞
j=1 is a

sequence of distinct nonnegative numbers. See Theorems 6.1 and 5.6 in [Bo-Er6].

Theorem 2.3. Suppose (λj)
∞
j=1 is a sequence of distinct nonnegative numbers satisfying∑∞

j=1 1/λj < ∞ . Suppose that A ⊂ [0,∞) is a set of positive Lebesgue measure, w is a

nonnegative-valued, integrable weight function on A with
∫
A
w > 0, and p ∈ (0,∞) . Then

span{xλ1 , xλ2 , . . .} is not dense in Lp,w(A) .
Moreover, if the gap condition

(2.1) inf{λj+1 − λj : j = 1, 2, . . .} > 0
4



holds, then every function f ∈ Lp,w(A) belonging to the Lp,w(A) closure of
span{xλ1 , xλ2 , . . .} can be represented as

f(x) =

∞∑

j=1

ajx
λj , x ∈ A ∩ [0, rw) ,

where

rw := sup

{
x ∈ [0,∞) :

∫

A∩(x,∞)

w(t) dt > 0

}
.

If the gap condition (2.1) does not hold, then every function f ∈ Lp,w(A) belonging to
the Lp,w(A) closure of span{xλ1 , xλ2 , . . .} can still be represented as an analytic function
on

{z ∈ C \ (−∞, 0] : |z| < rw}

restricted to A ∩ (0, rw) .

Theorem 2.4. Suppose
∑∞

j=1 1/λj < ∞ . Let s > 0 and p ∈ (0,∞) . Then there exists a

constant c depending only on Λ := (λj)
∞
j=1 , s , and p (and not on ̺ , A , or the “length” of

f) so that

‖f‖[0,̺] ≤ c ‖f‖Lp(A)

for every f ∈ span{xλ1 , xλ2 , . . .} and for every set A ⊂ [̺, 1] of Lebesgue measure at least
s .

Now we offer a sufficient condition for a sequence (λj)
∞
j=1 of distinct real numbers greater

than −(1/p) converging to −(1/p) , to guarantee the nondenseness of span{xλ1 , xλ2 , . . .}
in Lp[0, 1], where p ∈ (0,∞) .

Theorem 2.5. Let p ∈ (0,∞) . Suppose that (λj)
∞
j=1 is a sequence of distinct real numbers

greater than −(1/p) satisfying

∞∑

j=1

(λj + (1/p)) =: η < ∞ .

Then span{xλ1 , xλ2 , . . .} is not dense in Lp[0, 1] . Moreover, every function in the Lp[0, 1]
closure of span{xλ1 , xλ2 , . . .} can be represented as an analytic function on C \ (−∞, 0]
restricted to (0, 1).

Proof. The theorem is a consequence of D. J. Newman’s Markov-type inequality [Bo-Er3,
Theorem 6.1.1 on page 276] (see also [Ne]) and a Nikolskii-type inequality [Bo-Er3, page
281] (see also [Bo-Er5]). We state these as Theorems 2.6 and 2.7. Indeed, it follows from
Theorem 2.7 that

(2.2) ‖x1/pQ(x)‖L∞[0,1] ≤ (18 · 2pη)1/p ‖Q‖Lp[0,1]
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for every Q ∈ span{xλ1 , xλ2 , . . .} . Now repeated applications of Theorem 2.6 with the
substitution x = e−t imply that

‖(e−t/pQ(e−t))(m)‖L∞[0,∞) ≤ (9η)m‖e−t/pQ(e−t)‖L∞[0,∞) , m = 1, 2, . . . ,

in particular

|(e−t/pQ(e−t))(m)(0)| ≤ (9η)m‖e−t/pQ(e−t)‖L∞[0,∞) , m = 1, 2, . . . ,

for every Q ∈ span{xλ1 , xλ2 , . . .} . By using the Taylor series expansion of e−t/pQ(e−t)
around 0, we obtain that

(2.3) |z1/pQ(z)| ≤ c1(K, η)‖x1/pQ(x)‖L∞[0,1] , z ∈ K ,

for every Q ∈ span{xλ1 , xλ2 , . . .} and for every compact K ⊂ C \ {0}, where

c1(K, η) :=

∞∑

m=0

(9η)m
(
maxz∈K |log z|

)m

m!
= exp

(
9ηmax

z∈K
| log z|

)

is a constant depending only on K and η. Now combining (2.2) and (2.3) gives

(2.4) |Q(z)| ≤ c2(K, p, η)‖x1/pQ(x)‖Lp[0,1] , z ∈ K ,

for every Q ∈ span{xλ1 , xλ2 , . . .} and for every compact K ⊂ C \ {0}, where

c2(K, p, η) := c1(K, η)max
z∈K

|log z|−(1/p) = exp
(
9ηmax

z∈K
| log z|

)
max
z∈K

|log z|−(1/p)

is a constant depending only on K, p, and η. Now (2.4) shows that if

Qn ∈ span{xλ1 , xλ2 , . . .}

converges in Lp[0, 1], then it converges uniformly on every compact K ⊂ C \ {0}, and the
theorem is proved. �

Theorem 2.6 (Markov-Type Inequality for Müntz Polynomials). Suppose that
γ1, γ2, . . . , γn are distinct nonnegative numbers. Then

‖xQ′(x)‖[0,1] ≤ 9




n∑

j=1

γj



 ‖Q‖[0,1]

for every Q ∈ span{xγ1 , xγ2 , . . . , xγn} .

6



Theorem 2.7 (Nikolskii-Type Inequality for Müntz Polynomials). Let p ∈ (0,∞) .
Let λ1, λ2, . . . , λn be distinct real numbers greater than −(1/p) . Then

‖x1/pQ(x)‖L∞[0,1] ≤



18 · 2p
n∑

j=1

(λj + (1/p))




1/p

‖Q‖Lp[0,1]

for every Q ∈ span{xλ1 , xλ2 , . . . , xλn} .
Our next tool is an extension of the above Nikolskii-type inequality.

Lemma 2.8 (Another Nikolskii-Type Inequality for Müntz Polynomials). Let
p ∈ (0,∞) . Let B ⊂ [0, b] be a measurable set satisfying m(B ∩ [0, β]) ≥ δβ for every
β ∈ [0, b]. Let λ1, λ2, . . . , λn be distinct real numbers greater than −(1/p) . Suppose that

n∑

j=1

(λj + (1/p)) =: η ≤ δb/36 ,

where δ ∈ (0, 1]. Then

‖x1/pQ(x)‖L∞[0,b] ≤ ((2/δ)b · 2p)1/p ‖Q‖Lp(B) ,

and hence
max
z∈K

|Q(z)| ≤ c(K, p, η, b, δ)‖Q‖Lp(B)

for every Q ∈ span{xλ1 , xλ2 , . . . , xλn} and for every compact K ⊂ C \ {0} , where the
constant c(K, p, η, b, δ) depends only on K, p, η, b, and δ.

Proof of Lemma 2.8. By using a linear scaling if necessary, without loss of generality we
may assume that b = 1. Let Q ∈ span{xλ1 , xλ2 , . . . , xλn} , and pick a point y ∈ (0, 1] for
which

|y1/pQ(y)| = max
t∈[0,1]

|t1/pQ(t)| .

Then using the Mean Value Theorem and applying Theorem 2.6 (Markov-Type Inequality
for Müntz Polynomials) to

x1/pQ(x) ∈ span{xλ1+(1/p), xλ2+(1/p), . . . , xλn+(1/p)} ,

we obtain for x ∈ [(δ/2)y, y] that
(
max
t∈[0,1]

|t1/pQ(t)|
)
− |x1/pQ(x)| ≤ |y1/pQ(y)| − |x1/pQ(x)|

≤ |y1/pQ(y)− x1/pQ(x)| ≤ (y − x) max
t∈[x,y]

|(t1/pQ(t))′|

≤ y
1

x
max
t∈[x,y]

|t(t1/pQ(t))′| ≤ 2

δ
x
9η

x
max
t∈[0,1]

|t1/pQ(t)|

≤ 18η

δ
max
t∈[0,1]

|t1/pQ(t)| ≤ 1

2
max
t∈[0,1]

|t1/pQ(t)| .
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Hence, for x ∈ [(δ/2)y, y] we have

|x1/pQ(x)| ≥ 1

2
max
t∈[0,1]

|t1/pQ(t)| .

Using the assumption on the set B, we conclude that

m(B ∩ [(δ/2)y, y]) ≥ δy − (δ/2)y = (δ/2)y ,

and hence

‖Q‖pLp(B) =

∫

B

|Q(t)|p dt ≥
∫

B∩[(δ/2)y,y]

|Q(t)|p dt

≥ (δ/2)y2−p
(
y−(1/p)

)p(
max
t∈[0,1]

|t1/pQ(t)|
)p

= (δ/2)2−p

(
max
t∈[0,1]

|t1/pQ(t)|
)p

.

This finishes the proof of the first inequality of the lemma when b = 1. As we have already
remarked the case of an arbitrary b > 0 follows by a linear scaling. The second inequality

of the lemma follows from the first one and from (2.3) applied to Q̃(x) = Q(bx), where

Q̃ ∈ span{xλ1 , xλ2 , . . .}. �

Corollary 2.9. Let p ∈ (0,∞) and δ ∈ (0, 1]. Let B ⊂ [0, b] be a measurable set satisfying
m(B ∩ [0, β]) ≥ δβ for every β ∈ [0, b]. Let (λj)

∞
j=1 be a sequence of distinct real numbers

greater than −(1/p) satisfying

∞∑

j=1

(λj + (1/p)) =: η ≤ δb/36 .

Then span{xλ1 , xλ2 , . . .} is not dense in Lp(B) . Moreover, every function from the Lp(B)
closure of span{xλ1 , xλ2 , . . .} can be represented as an analytic function on C \ (−∞, 0]
restricted to B \ {0} .
Proof of Corollary 2.9. The corollary is a consequence of D. J. Newman’s Markov-type
inequality formulated in Theorem 2.6, and our Nikolskii-type inequality given by Lemma
2.8. Indeed, it follows from Lemma 2.8 and Theorem 2.6 by the substition z = e−t and by
the Taylor expansion of e−t/pQ(e−t) around 0 that

|z1/pQ(z)| ≤ c(K, p, b, δ)‖Q‖Lp(B)

whenever p ∈ (0,∞), B ⊂ [0, b] is a measurable set satisfying m(B ∩ [0, β]) ≥ δβ for every
β ∈ [0, b], (λj)

∞
j=1 is a sequence of distinct real numbers greater than −(1/p) satisfying

n∑

j=1

(λj + (1/p)) = η ≤ δb/36 ,

δ ∈ (0, 1], Q ∈ span{xλ1 , xλ2 , . . .}, K ⊂ C is bounded, and z ∈ K, where c(K, p, b, δ) is a
constant depending only on K, p, b, and δ. �
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Corollary 2.10. Let p ∈ (0,∞) . Let A ⊂ [0, 1] be a measurable set with lower density
δ > 0 at 0. Let (λj)

∞
j=1 be a sequence of distinct real numbers greater than −(1/p) satisfying

∞∑

j=1

(λj + (1/p)) < ∞ .

Then span{xλ1 , xλ2 , . . .} is not dense in Lp(A) . Moreover, every function from the Lp(A)
closure of span{xλ1 , xλ2 , . . .} can be represented as an analytic function on C \ (−∞, 0]
restricted to A \ {0} .
Proof of Corollary 2.10. The corollary follows easily from Corollary 2.9. To see this, choose
b ∈ (0, 1] such that with B := A ∩ [0, b] we have m(B ∩ [0, β]) ≥ δβ for every β ∈ [0, b].
Then choose N ∈ N such that

∞∑

j=N+1

(λj + (1/p)) =: η ≤ δb/36 .

Let U be the Lp(A) closure of

span{xλ1 , xλ2 , . . . } .
Let V be the Lp(A) closure of

span{xλN+1 , xλN+2 , . . .} .
Since the space

W := span{xλ1 , xλ2 , . . . , xλN }
is finite dimensional, we have U ⊂ V + W . Therefore, by Corollary 2.9 every function
from the Lp(A) closure of span{xλ1 , xλ2 , . . .} can be represented as an analytic function
on C \ (−∞, 0] restricted to A \ {0} . �

Finally in this section we restate a Nikolskii-type inequality that is proved in [Bo-Er3,
pages 216–217] for 1 ≤ p < ∞ .

Theorem 2.11. Let p ∈ [1,∞) . Suppose that (λj)
∞
j=1 is a sequence of distinct real numbers

greater than −(1/p) satisfying

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ .

Then for every ε > 0 there exists a constant cε > 0 depending only on ε so that

|Q(x)| ≤ cεx
−(1/p)‖Q‖Lp[0,1]

for every Q ∈ span{xλ1 , xλ2 , . . .} and for every x ∈ [0, 1− ε) .

We suspect that the above theorem may extend to all 0 < p < ∞ and would offer a
natural approach to prove one half of the “Full Müntz Theorem in Lp[0, 1]” when 0 < p < 1 .
However, we are unable to prove this extension. Nevertheless we can still prove the “Full
Müntz Theorem in Lp[0, 1]” for all 0 < p < ∞ with the help of Theorems 2.3 – 2.8 and
Theorem 3.5. This “Full Müntz Theorem in Lp[0, 1]” for all 0 < p < ∞ is formulated by
Theorem 3.6.
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3. New Results

The new results of the paper include the resolution of the conjecture that the “Full
Müntz Theorem in Lp[0, 1]” remains valid when 0 < p < 1 . Theorems 3.1 and 3.2 offer
the right sufficient conditions for the denseness of span{xλ1 , xλ2 , . . .} in Lp[0, 1] when
0 < p < 1 . The “easy case” when Λ := (λj)

∞
j=1 is a sequence of distinct real numbers

greater than −(1/p) tending to −(1/p) + α , where α > 0 , is handled by Theorem 3.1.

Theorem 3.1. Let p ∈ (0,∞) . Suppose Λ := (λj)
∞
j=1 is a sequence of distinct real numbers

greater than −(1/p) tending to −(1/p)+α , where α > 0 . Then span{xλ1 , xλ2 , . . .} is dense
in Lp[0, 1] .

In the much more interesting case, when Λ := (λj)
∞
j=1 is a sequence of distinct real num-

bers greater than −(1/p) tending to −(1/p) , our next theorem offers a sufficient condition
for the denseness of span{xλ1 , xλ2 , . . .} in Lp[0, 1] , p ∈ (0, 1] .

Theorem 3.2. Let p ∈ (0,∞) . Let Λ := (λj)
∞
j=1 be a sequence of distinct real numbers

greater than −(1/p) tending to −(1/p) . Suppose that

∞∑

j=1

(λj + (1/p)) = ∞ .

Then span{xλ1 , xλ2 , . . .} is dense in Lp[0, 1] .

Our next theorem establishes a sufficient condition for the non-denseness of
span{xλ1 , xλ2 , . . .} in Lp(A) where 0 < p < ∞ and A ⊂ [0, 1] is a compact set with positive
lower density at 0. It extends one direction of the “Full Müntz Theorem” in Lp[0, 1] proved
earlier for p ∈ [1,∞) , see Theorem 2.2. Moreover, the statement about the Lp(A) closure
of span{xλ1 , xλ2 , . . . } in the non-dense case is new even for A = [0, 1] and 1 ≤ p < ∞.

Theorem 3.3. Let A ⊂ [0, 1] be a compact set with positive lower density at 0. Let
p ∈ (0,∞). Suppose (λj)

∞
j=1 is a sequence of distinct real numbers greater than −(1/p) .

Suppose
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ .

Then every function from the Lp(A) closure of span{xλ1 , xλ2 , . . .} can be represented as
an analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}

(m(·) denotes the one-dimensional Lebesgue measure).

The key to the proof of Theorem 3.3 is a combination of Theorems 2.3 – 2.7 with the
following functional analytic theorem.
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Theorem 3.4. Let p ∈ (0,∞) . Assume that W and V are closed linear subspaces of
Lp[0, 1] such that

‖f‖L∞[0,1/2] ≤ C1‖f‖Lp[0,1]

for every f ∈ W , and
‖f‖L∞[1/2,1] ≤ C2‖f‖Lp[0,1]

for every f ∈ V , where C1 and C2 are positive constants depending only on W and V ,
respectively. Then W + V is closed in Lp[0, 1] .

A straightforward modification of the proof of the above theorem yields

Theorem 3.5. Let p ∈ (0,∞) . Let A1, A2 ⊂ R be sets of finite positive measure with
A1 ∩A2 = ∅. Assume that W and V are closed linear subspaces of Lp(A1 ∪A2) such that

‖f‖L∞(A1) ≤ C1‖f‖Lp(A1∪A2)

for every f ∈ W , and
‖f‖L∞(A2) ≤ C2‖f‖Lp(A1∪A2)

for every f ∈ V , where C1 and C2 are positive constants depending only on W and V ,
respectively. Then W + V is closed in Lp(A1 ∪ A2) .

Theorem 3.6 (Full Müntz Theorem in Lp(A) for p ∈ (0,∞) and for compact
sets A ⊂ [0, 1] with positive lower density at 0.). Let A ⊂ [0, 1] be a compact set with
positive lower density at 0. Let p ∈ (0,∞). Suppose (λj)

∞
j=1 is a sequence of distinct real

numbers greater than −(1/p) . Then span{xλ1 , xλ2 , . . .} is dense in Lp(A) if and only if

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Moreover, if
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ ,

then every function from the Lp(A) closure of span{xλ1 , xλ2 , . . .} can be represented as an
analytic function on {z ∈ C \ (−∞, 0] : |z| < rA]} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}

(m(·) denotes the one-dimensional Lebesgue measure).

It may be interesting to compare Theorem 3.6 with Theorems 3.A and 3.B below proved
in [Bo-Er7]. Let

‖f‖Lp,w(A) :=

(∫

A

|f(x)|pw(x) dx
)1/p

.

The space Lp,w(A) is the collection of all real-valued measurable functions on A for which
‖f‖Lp,w(A) < ∞ .
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Theorem 3.A (Full Müntz Theorem in Lp(A) for p ∈ (0,∞) when A ⊂ [0, 1]
is compact and inf A > 0). Suppose (λj)

∞
j=−∞ is a sequence of distinct real numbers

satisfying
∞∑

j=−∞
λj 6=0

1

|λj |
< ∞

with λj < 0 for j < 0 and λj ≥ 0 for j ≥ 0. Suppose A ⊂ [0,∞) is a set of positive
Lebesgue measure with inf A > 0, w is a nonnegative-valued, integrable weight function on
A with

∫
A
w > 0, and p ∈ (0,∞). Then

span{xλj : j ∈ Z}

is not dense in Lp,w(A).
Suppose the gap condition

inf{λj − λj−1 : j ∈ Z} > 0

holds. Then every function f ∈ Lp,w(A) belonging to the Lp,w(A) closure of

span{xλj : j ∈ Z}

can be represented as

f(x) =
∞∑

j=−∞

ajx
λj , x ∈ A ∩ (aw, bw),

where

aw := inf

{
y ∈ [0,∞) :

∫

A∩(0,y)

w(x) dx > 0

}

and

bw := sup

{
y ∈ [0,∞) :

∫

A∩(y,∞)

w(x) dx > 0

}
.

If the above gap condition does not hold, then every function f ∈ Lp,w(A) belonging to
the Lp,w(A) closure of

span{xλj : j ∈ Z}
can still be represented as an analytic function on

{z ∈ C \ (−∞, 0] : aw < |z| < bw}

restricted to A ∩ (aw, bw).
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Theorem 3.B (Full Müntz Theorem in Lp(A) for p ∈ (0,∞) when A ⊂ [0, 1]
is compact and inf A > 0, Part 2). Suppose (λj)

∞
j=−∞ is a sequence of distinct real

numbers. Suppose A ⊂ (0,∞) is a bounded set of positive Lebesgue measure, inf A > 0,
w is a nonnegative-valued integrable weight function on A with

∫
A
w > 0, and p ∈ (0,∞).

Then
span{xλj : j ∈ Z}

is dense in Lp,w(A) if and only if

∞∑

j=−∞
λj 6=0

1

|λj |
< ∞ .

Finally our next theorem offers an upper bound for the Lp[0, 1] distance from xm to

span{xλ1 , xλ2 , . . . , xλn} ,

when Λ := (λj)
∞
j=1 is a sequence of real numbers tending to −(1/p) and m = −(1/p) + α

for some α > 0 .

Theorem 3.7. Let p > 0 . Let Λ := (λj)
∞
j=1 be a strictly decreasing sequence of real

numbers tending to −(1/p) . Let m = −(1/p) + α for some α > 0 . Then there are

Rn ∈ span{xλ1 , xλ2 , . . . , xλn} .

such that ∫ 1

0

|xm −Rn(x)|p dx

≤ c(Λ, α)p

pmin1≤j≤n (λj + (1/p))
exp



−p

(
1

2α
− 1

2

) n∑

j=1

(λj + (1/p))





whenever min1≤j≤n (λj + (1/p)) ≤ α , where c(Λ, α) is a constant depending only on Λ and
α .

4. Proof of Theorems 3.1, 3.2, 3,7, and the sufficiency part of Theorem 2.2

To prove the sufficiency part of Theorem 2.2 we need the following; see [1, page 191].

Blaschke’s Theorem. Suppose (βj)
∞
j=1 is a sequence in D := {z ∈ C : |z| < 1} satisfying

∞∑

j=1

(1− |βj |) = ∞ .

Denote the multiplicity of βk in (βj)
∞
j=1 by mk . Assume that f is a bounded analytic

function on D having a zero at each βj with multiplicity mj . Then f = 0 on D .
13



The proof below is based on the Riesz Representation Theorem for continuous linear
functionals on Lp[0, 1] , valid for p ∈ [1,∞) , so the assumption p ∈ [1,∞) in Theorem 2.2
is essential for our arguments.

Proof of the sufficiency part of Theorem 2.2. Choosing a subsequence if necessary, without
loss of generality we may assume that one of the following three cases occurs.
Case 1: λj ≥ 1 for each j = 1, 2, . . . with

∑∞
j=1 (1/λj) = ∞ .

Case 2: (λj)
∞
j=1 is a sequence of distinct real numbers tending to −(1/p) + α , where

α > 0 .
Case 3: −(1/p) < λj ≤ 0 for each j = 1, 2, . . . with

∑∞
j=1 (λj + (1/p)) = ∞ and

limj→∞ λj = −(1/p) .
In Case 1, Theorem 2.1 (Full Müntz Theorem in C[0, 1]) yields that span{1, xλ1 , xλ2 , . . .}

is dense in C[0, 1]. From this we can easily deduce that span{xλ1 , xλ2 , . . .} is dense in
Lp[0, 1] .

In Case 2, Theorem 3.1 implies that span{xλ1 , xλ2 , . . .} is dense in Lp[0, 1] .
In Case 3, we argue as follows. By the Hahn-Banach Theorem and the Riesz Represen-

tation Theorem for continuous linear functionals on Lp[0, 1] we know that

span{xλ1 , xλ2 , . . .}

is not dense in Lp[0, 1] if and only if there exists a 0 6= h ∈ Lq[0, 1] satisfying

(4.1)

∫ 1

0

tλjh(t) dt = 0 , j = 1, 2, . . . ,

where q is the conjugate exponent of p defined by p−1 + q−1 = 1 . Suppose there exists a
0 6= h ∈ Lq[0, 1] such that (4.1) holds. Let

f(z) :=

∫ 1

0

tzh(t) dt , Re(z) > −(1/p) .

We can easily show by using Hölder’s inequality that

g(z) := (z + 1)2f(z + 1− (1/p))

is a bounded analytic function on the open unit disk, that satisfies

g(λj + (1/p)− 1) = 0 .

Now

∞∑

j=1

(1− |λj + (1/p)− 1|) =
∞∑

j=1

(1− (1− λj − (1/p)) =

∞∑

j=1

(λj + (1/p)) = ∞ .

Hence Blaschke’s Theorem with βj := λj + (1/p) − 1 , j = 1, 2, . . . , yields that g = 0 on
the open unit disk. Therefore f = 0 on the open disk with diameter [−(1/p), 2− (1/p)] .
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Now observe that f is an analytic function on the half plane {z ∈ C : Re(z) > −(1/p)} ,
hence f(z) = 0 whenever Re(z) > −(1/p) , so

f(n) =

∫ 1

0

tnh(t) dt = 0 , n = 0, 1, 2, . . . .

Now the Weierstrass Approximation Theorem yields that

∫ 1

0

u(t)h(t) dt = 0

for every u ∈ C[0, 1]. This implies

∫ x

0

h(t) dt = 0

for all x ∈ [0, 1] , so h(x) = 0 almost everywhere on [0, 1] , a contradiction. �

Proof of Theorem 3.1. Let
λ∗
j = λj + (1/p)− (α/2) ,

where the assumptions on Λ insure that λ∗
j > (α/4) for all sufficiently large j . Let m ≥

(α/2) . Then by Theorem 2.1 (Full Müntz Theorem in C[0, 1]), for every ε > 0 there is
Qε ∈ span{xλ∗

1 , xλ∗
2 , . . .} such that

‖xm−(α/2)+(1/p) −Qε‖[0,1] < ε .

Let
Rε(x) := x(α/2)−(1/p)Qε(x) ∈ span{xλ1 , xλ2 , . . .} .

Then

∫ 1

0

|xm −Rε(x)|p dx =

∫ 1

0

∣∣∣x(α/2)−(1/p)
(
xm−(α/2)+(1/p) −Qε(x)

)∣∣∣
p

dx

≤
(∫ 1

0

xp(α/2)−1 dx

)∥∥∥xm−(α/2)+(1/p) −Qε(x)
∥∥∥
p

L∞[0,1]

≤ εp

p(α/2)
.

Hence the monomials xm are in the Lp[0, 1] closure of span{xλ1 , xλ2 , . . .} for all sufficiently
large m. Now Theorem 2.1 (Full Müntz Theorem in C[0, 1]) implies that the elements f of
C[0, 1] with f(0) = 0 are contained in the Lp[0, 1] closure of span{xλ1 , xλ2 , . . .}, and since
all such functions form a dense set in Lp[0, 1] , the theorem is proved. �

Proof of Theorem 3.2. The case p ∈ [1,∞) is handled by Theorem 2.2 (the part of Theorem
2.2 needed here is proved in the beginning of this section). So in the rest of the proof we
assume that p ∈ (0, 1).
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Step 1. For t > 0 we define ft(x) := xt(1 − log x)b , x ∈ (0, 1] , and ft(0) := 0. Let
b ∈ [1,∞) . We show that

span{1 ∪ {ft : t > 0}}
is dense in C[0, 1]. To see this, for a given ε > 0 we get a polynomial P so that

‖(1− log x)−b − P (x)‖L∞[0,1] < ε .

This can be done by the Weierstrass Theorem. For m ≥ 1 multiply through by the factor
xm(1− log x)b to see that

‖xm − xm(1− log x)bP (x)‖L∞[0,1] < ε‖x(1− log x)b‖L∞[0,1] .

Step 2. It is elementary calculus to show that for x ∈ (0, 1], a ∈ (0, 1), and b ∈ [1,∞), we
have

xa(1− log x)b ≤ (b/a)b .

Step 3. Suppose (γn)
∞
n=1 is a strictly decreasing sequence tending to 0. Suppose

∞∑

j=1

γj = ∞ and b ∈ [1,∞) .

Let

f0 := 1 and fn(x) := xγn(1− log x)b , x ∈ (0, 1] , fn(0) := 0 , n = 1, 2, . . . .

We show that span{fn : n = 0, 1, 2, . . .} is dense in C[0, 1].
Suppose to the contrary that span{fn : n = 0, 1, 2, . . .} is not dense in C[0, 1]. Then

by the Hahn Banach Theorem and the Riesz Representation Theorem there is a nonzero
finite signed measure µ on [0, 1] so that for each n = 0, 1, 2, . . . we have

∫ 1

0

fn(x) dµ(x) = 0 .

For z ∈ C with Re(z) > 0 we define

F (z) =

∫ 1

0

xz(1− log x)b dµ(x) .

So F is analytic and bounded on

{z ∈ C : Re(z) > a}

for all a > 0. Now for any z in the open unit disk, we define g(z) := (1 + z)2bF (z + 1).
Observe that g(γn − 1) = 0 for each n = 1, 2, . . . . Step 2 implies that g is bounded on
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the open unit disk, so by Blaschke’s Theorem and the hypothesis on γn we conclude that
g = 0 on the open unit disk, hence F (z) = 0 for all z ∈ C with Re(z) > 0 by the Unicity
Theorem of analytic functions.

Step 4. Now assume that Λ := (λj)
∞
j=1 satisfies the assumptions of the theorem. Up to

now b ∈ [1,∞) was arbitrary. Now take b > 1/p, so that x−(1/p)(1− log x)−b is in Lp[0, 1].
Let

γj := λj + (1/p) , j = 1, 2, . . . .

For m ≥ 1 and ε > 0 we use Step 3 to get an n ∈ N and coefficients a1, a2, . . . , an ∈ R so
that

∥∥∥xm+(1/p)(1− log x)b −
n∑

j=1

ajx
λj+(1/p)(1− log x)b

∥∥∥
Lp[0,1]

< ε .

Then

∥∥∥xm −
n∑

j=1

ajx
λj

∥∥∥
Lp[0,1]

≤ ε‖x−(1/p)(1− log x)−b‖Lp[0,1] .

Hence xm is in the Lp[0, 1] closure of span{xλ1 , xλ2 , . . . } for every integer m ≥ 1. Since the
polynomials with constant term 0 form a dense set in Lp[0, 1], the theorem is proved. �

Proof of Theorem 3.7. Let m = −(1/p) + α with α > 0 . Let k = k(n) be such that

λk = min
1≤j≤n

λj .

For j = 1, 2, . . . , n let

λ∗
j := λj + (1/p) > 0 , µ∗

j = λ∗
j − (λ∗

k/2) > 0 , µ̃j := µ∗
j − (1/2) > −(1/2) .

Note that

(4.2) 0 < λ∗
j/2 ≤ µ∗

j ≤ λ∗
j

for every j = 1, 2, . . . . Assume that λk + (1/p) = λ∗
k ≤ α . By [Bo-Er3, page 173], there is

a

Pn ∈ span{xµ̃1 , xµ̃2 , . . . , xµ̃n}
17



such that

∥∥∥xm−(λ∗
k/2)+(1/p)−(1/2) − Pn(x)

∥∥∥
L2[0,1]

≤ 1√
2m− λ∗

k + (2/p)

∣∣∣∣∣∣

n∏

j=1

(m− (λ∗
k/2) + (1/p)− (1/2))− µ̃j

(m− (λ∗
k/2) + (1/p)− (1/2)) + µ̃j + 1

∣∣∣∣∣∣

≤ 1√
2α− λ∗

k

∣∣∣∣∣∣

n∏

j=1

(
1− 2µ̃j + 1

(m− (λ∗
k/2) + (1/p)− (1/2)) + µ̃j + 1

)∣∣∣∣∣∣

≤ 1√
α

∣∣∣∣∣∣

n∏

j=1

(
1−

2µ∗
j

α+ µ∗
j − (λ∗

k/2)

)∣∣∣∣∣∣
≤ c1(Λ, α)√

α

∣∣∣∣∣∣∣∣

n∏

j=1

µ∗
j
≤α/2

(
1−

2µ∗
j

2α

)
∣∣∣∣∣∣∣∣

≤ c1(Λ, α)√
α

∣∣∣∣∣∣∣∣

n∏

j=1

µ∗
j
≤α/2

(
1−

λ∗
j

2α

)
∣∣∣∣∣∣∣∣
≤ c2(Λ, α) exp


− 1

2α

n∑

j=1

µ∗
j
≤α/2

λ∗
j




≤ c3(Λ, α) exp


− 1

2α

n∑

j=1

λ∗
j


 ,

where c1(Λ, α) , c2(Λ, α) , and c3(Λ, α) are constants depending only on Λ and α . Now let

Qn(x) := x1/2Pn(x) ∈ span{xµ∗
1 , xµ∗

2 , . . . , xµ∗
n} .

Then, combining the Nikolskii-type inequality of [Bo-Er3, page 281] (see Theorem 2.7 of
this paper) and the above L2[0, 1] estimate, we obtain

∥∥∥xm−(λ∗
k/2)+(1/p) −Qn(x)

∥∥∥
L∞[0,1]

=
∥∥∥
(
xm−(λ∗

k/2)+(1/p)−(1/2) − Pn(x)
)
x1/2

∥∥∥
L∞[0,1]

≤ 6
√
2


α+

n∑

j=1

(µ̃j + (1/2))




1/2 ∥∥∥xm−(λ∗
k/2)+(1/p)−(1/2) − Pn(x)

∥∥∥
L2[0,1]

≤ 6
√
2


α+

n∑

j=1

(µ̃j + (1/2))




1/2

c3(Λ, α) exp


− 1

2α

n∑

j=1

λ∗
j




= 6
√
2


α+

n∑

j=1

µ∗
j




1/2

c3(Λ, α) exp


− 1

2α

n∑

j=1

λ∗
j



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≤ 6
√
2


α+

n∑

j=1

λ∗
j




1/2

c3(Λ, α) exp


− 1

2α

n∑

j=1

λ∗
j




≤ c4(Λ, α) exp



−
(

1

2α
− 1

2

) n∑

j=1

λ∗
j





with a constant c4(Λ, α) > 0 depending only on Λ and α . Now we define

Rn(x) = x(λ∗
k/2)−(1/p)Qn(x) ∈ span{xλ1 , xλ2 , . . . , xλn} .

Then

∫ 1

0

|xm −Rn(x)|p dx =

∫ 1

0

∣∣∣x(λ∗
k/2)−(1/p)

(
xm−(λ∗

k/2)+(1/p) −Qn(x)
)∣∣∣

p

dx

≤
(∫ 1

0

xp(λ∗
k/2)−1 dx

)∥∥∥xm−(λ∗
k/2)+(1/p) −Qn(x)

∥∥∥
p

L∞[0,1]

≤ c4(Λ, α)
p

p(λ∗
k/2)

exp


−p

(
1

2α
− 1

) n∑

j=1

λ∗
j


 ,

and the theorem is proved �

5. Proof of Theorems 3.3 and 3.6

Proof of Theorem 3.3. Let p ∈ (0,∞) . Suppose (λj)
∞
j=1 is a sequence of distinct real

numbers greater than −(1/p) . Suppose

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ .

Then {λj : j = 1, 2, . . .} = {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . .} , where (γj)
∞
j=1 is a

strictly decreasing sequence of distinct real numbers greater than −(1/p) satisfying

∞∑

j=1

(γj + (1/p)) < ∞

and (δj)
∞
j=1 is a strictly increasing sequence of positive numbers satisfying

∞∑

j=1

1

δj
< ∞ .
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Let A ⊂ [0, 1] be a compact set with lower density δ > 0 at 0. Choose b ∈ (0, 1] such that
m(A ∩ [0, β]) ≥ δβ for every β ∈ [0, b]. Then choose N ∈ N such that

∞∑

j=N+1

(γj + (1/p)) =: η ≤ δb/36 .

Let U be the Lp(A) closure of

span{{xλ1 , xλ2 , . . .} \ {xγ1 , xγ2 , . . . , xγN}} ,

Let V be the Lp(A) closure of

span{xγN+1 , xγN+2 , . . .} ,

and let W be the Lp(A) closure of span{xδ1 , xδ2 , . . .} . Then by Theorem 2.3 every f ∈ W
can be represented as an analytic function on

DrA := {z ∈ C \ (−∞, 0] : |z| < rA}

restricted to A ∩ (0, rA) . Further, by Corollary 2.10 every f ∈ V can be represented as
an analytic function on C \ (−∞, 0] restricted to A \ {0}. Finally, by Theorems 2.4 and
2.8, W and V satisfy the assumptions of Theorem 3.5. Hence W + V is closed in Lp[0, 1] ,
and every function from W + V can be represented as an analytic function on DrA . Since
U ⊂ W + V , every function from U can be represented as an analytic function on DrA .
Now let Y be the Lp(A) closure of

span{xλ1 , xλ2 , . . . } .

Since
Z := span{xλ1 , xλ2 , . . . xλN }

is a finite-dimensional vector space, we have Y = U +Z, hence every function from Y can
be represented as an analytic function on DrA . This finishes the proof. �

Proof of Theorem 3.6. If
∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
< ∞ ,

then the theorem follows from Theorem 3.3. If

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ ,

then the theorem follows from Tietze’s Extension Theorem and from Theorems 2.1 and
3.2. We omit the trivial details. �
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6. Proof of Theorems 3.4 and 3.5

In this section we prove Theorem 3.4. Since the ideas that underly the proof led to
some new results about quasi-Banach spaces that may be useful elsewhere, we present
some general results that include more information than what is needed for the proof of
Theorem 3.4. We thank Nigel Kalton for several very useful and illuminating e-discussions
about the contents of this section and related matters.

A quasi-norm is a real valued function ‖ · ‖ on a (real or complex) vector space X
which satisfies the axioms for a norm except that the triangle inequality is replaced by the
condition

‖x+ y‖ ≤ k(‖x‖+ ‖y‖)

for some constant k. The smallest such k is called the modulus of concavity of the quasi-
norm. For 0 < p ≤ 1, a quasi-norm ‖ · ‖ is p-subadditive provided

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all vectors x and y. A p-subadditive quasi-norm is called a p-norm. A quasi-norm
‖ · ‖ with modulus of concavity k is equivalent to a p-norm with 21/p = 2k. A p-norm is
obviously also a q-norm for all 0 < q < p.

These and many other basic facts about quasi-norms and p-norms are discussed in the
first few sections of [K-P-R]. This book also contains much of the deeper theory of p-normed
spaces.

In this section all spaces are p-normed spaces for some fixed 0 < p ≤ 1. B(X, Y ) denotes
the space of bounded (same as continuous for p-normed spaces) linear operators, p-normed
by ‖T‖ := sup{‖Tx‖Y : ‖x‖X ≤ 1} .

We recall that a linearly independent sequence {xn}∞n=1 in a p-normed space is basic

provided that the natural partial sum projections Pn from the linear span of {xn}∞n=1

onto the span of {xk}nk=1 are uniformly bounded. A sequence {yn}∞n=1 of nonzero vectors
is called a block basis of {xn}∞n=1 provided that there is a strictly increasing sequence
{nk}∞k=1 of natural numbers so that for each k, yk is in span{xj : nk ≤ j < nk+1}. A block
basis of a basic sequence is again a basic sequence.

Just as for normed spaces, basic sequences play an important role in studying the
structure theory of quasi-normed spaces (see [K-P-R, I.5ff]). However, in quasi-normed
spaces it typically is difficult to construct basic sequences.

The main functional analytical concept we study in this section is that of strictly sin-

gular operator. An operator T in B(X, Y ) is called strictly singular provided that for
every infinite dimensional subspace X0 of X , the restriction T|X0

of T to X0 is not an
isomorphism. Here it is convenient to work with nonclosed subspaces but the definition
is obviously equivalent if we add “closed” before “subspace”. The space of all strictly
singular operators from X to Y is denoted by SS(X, Y ).

Lemma 6.1. Assume that T , S are in SS(X, Y ). Then T +S is strictly singular provided
that either
(1) Every infinite dimensional closed subspace of X contains a basic sequence;
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or
(2) X is complete and kerT = {0}.
Proof of Lemma 6.1. The proof of (1) is just like the proof when X is a normed space (of
course, every normed space X satisfies the hypothesis of (1); see [Li-Tz 1.a.5]): Consider
any closed subspace X0 of X which has a basis {xn}∞n=1. Since for every N the restriction
of T to span{xn : n > N} is not an isomorphism, get a normalized block basis {yn}∞n=1

of {xn}∞n=1 so that ‖Tyn‖ → 0 arbitrarily quickly. Using then the strict singularity of S,
get a normalized block basis {zn}∞n=1 of {yn}∞n=1 so that ‖Szn‖ → 0. If ‖Tyn‖ → 0 fast
enough, then necessarilly ‖Tzn‖ → 0, so that T + S is not an isomorphism on X0.

Part 2 is not needed in the sequel, so we present the proof at the end of this section. �

Remark 6.1. Something is needed to guarantee that the sum of strictly singular operators
is strictly singular. Suppose that X contains a subspace E with dimE = 2 so that every
closed infinite dimensional subspace of X contains E. Then for some Y there exist T , S
in SS(X, Y ) with T + S an isomorphic embedding. (Take QX1

: X → X/X1 , QX2
: X →

X/X2 , Y = X/X1 ⊕X/X2 , T = QX1
⊕ {0} , S = {0} ⊕QX2

. Here dimX1 = dimX2 = 1
with X1 ∩X2 = {0} and X1 ∪X2 ⊂ E. QZ is the quotient map from X to X/Z .) There
exists such a strange space X : In Theorem 5.5 of [Ka] Kalton constructs for every n a p-
Banach space X and an n dimensional subspace E so that every closed infinite dimensional
subspace of X contains E.

Definition 6.1. We say that X has property (B) if every infinite dimensional subspace
of X contains a basic sequence.

Remark 6.2. If the completion of a p-normed space X has a basic sequence, then so does
X (the usual normed space perturbation argument [Li-Tz, 1.a.9] works). Thus if every
infinite dimensional closed subspace of X contains a basic sequence, then X has property
(B).

Definition 6.2. Given a sequence {xn}∞n=1 inX , say that {xn}∞n=1 has a lower∞-estimate

if there is δ > 0 which satisfies
∥∥∥
∑

akxk

∥∥∥ ≥ δmax
k

|ak|

for all finitely nonzero sequences {an}∞n=1 of scalars.
Obviously a normalized basic sequence has a lower ∞-estimate. This was used implicitly

in the proof of Lemma 6.1.
Remark 6.3. Obviously the following are equivalent.
(i) {xn}∞n=1 has a lower ∞-estimate.
(ii) xn 7→ en extends to a bounded linear operator from span{xn}∞n=1 into c0.
(iii) There is an equicontinuous sequence {x∗

n}∞n=1 ⊂ (span{xn}∞n=1)
∗ so that {xn, x

∗
n}∞n=1

is biorthogonal.
(iv) There is a bounded linear operator T from span{xn}∞n=1 into some space Y so that

{Txn}∞n=1 has a lower ∞-estimate.

For Banach spaces, the next lemma is a standard exercise in text books. The extension
to the p-normed setting is routine.
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Lemma 6.2. Let X be a p-Banach space and W , V closed subspaces with W ∩ V = {0}.
Then W + V is closed if and only if dist (SW , V ) > 0, where SW := {w ∈ W : ‖w‖ = 1} .
Proof of Lemma 6.2. Assume that W + V is not closed. Take wn ∈ W , vn ∈ V with
wn + vn → z /∈ W + V . If sup ‖wn‖ = ∞ , then without loss of generality ‖wn‖ → ∞ ,

so
∥∥∥ wn

‖wn‖
+ vn

‖wn‖

∥∥∥→ 0 and hence dist (SW , V ) = 0 . If sup ‖wn‖ 6= ∞ , then still {wn}∞n=1

cannot have a Cauchy subsequence (else z would be inW+V ), so we can assume that there

exists δ > 0 that δ < ‖wn − wm‖ < C for n 6= m. Then
∥∥∥ wn−wn+1

‖wn−wn+1‖
+ vn−vn+1

‖wn−wn+1‖

∥∥∥ → 0 ,

hence again dist (SW , V ) = 0 .
The other direction is even easier (and anyway is not needed in the sequel). �

Proposition 6.3. Let X be a p-Banach space and W , V closed subspaces. If W + V is
not closed then there exist {wn}∞n=1 ⊂ W , {vn}∞n=1 ⊂ V so that
(1) ‖wn‖ = 1
(2) ‖wn + vn‖ → 0
(3) {wn}∞n=1 has a lower ∞-estimate.

Proof of Proposition 6.3. First assume that W ∩ V = {0} . Under the assumptions of the
lemma, by Lemma 6.2 we can pick {wn}∞n=1 ⊂ W and {vn}∞n=1 ⊂ V with ‖wn‖ = 1 and
‖wn + vn‖ → 0 . Define a p-norm on W by |w|p = dist (w, V ) = ‖QVw‖p. This is a p-norm
since W ∩ V = {0} is weaker than ‖ · ‖, so by [K-P-R, Theorem 4.7], {wn}∞n=1 has a
subsequence which has a lower ∞-estimate.

In the general case pass to X/(W ∩ V ) . QW∩V W is closed there since it is isometric to
W/(W ∩ V ) and similarly for QW∩V V . Also W + V = Q−1

W∩V (QW∩VW + QW∩V V ) , so
since W +V is not closed, neither is QW∩VW +QW∩V V . Thus we get {wn}∞n=1 ⊂ W and
{vn}∞n=1 ⊂ V so that ‖QW∩Vwn +QW∩V vn‖ → 0 , ‖QW∩Vwn‖ = 1 , and {QW∩V wn}∞n=1

has a lower ∞-estimate. By adding some zn ∈ W ∩ V to wn and subtracting zn from vn
we can assume that ‖wn‖ → 1 . Pick xn ∈ W ∩ V so that ‖wn + vn + xn‖ → 0 . Then
vn + xn ∈ V and {wn}∞n=1 has a lower ∞-estimate since {QW∩Vwn}∞n=1 does. �

Proposition 6.4. Assume the p-Banach space X has property (B), W , V are closed
subspaces, and there are T, S ∈ B(X,X) so that T|W and S|V are strictly singular and
I = T + S , where I is the identity operator on X. Then W + V is closed.

Proof of Proposition 6.4. Suppose W + V is not closed. Then get {wn}∞n=1 ⊂ W and
{vn}∞n=1 ⊂ V by Proposition 6.3 and take δ > 0 so that for all finitely nonzero sequences
of scalars {an}∞n=1 , ∥∥∥

∑
anwn

∥∥∥ ≥ δmax |an| .

By passing to a subsequence, assume that

∞∑

j=n

‖wj + vj‖p <
1

n
.

Let V0 be an infinite dimensional subspace of span{vn}∞n=1 . Since T|W is strictly singular,

we can get xn =
∑kn+1

kn+1 ajwj , ‖xn‖ = 1 , with yn :=
∑kn+1

kn+1 ajvj ∈ V0 so that ‖Txn‖ → 0 .
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Then

1− ‖yn‖p ≤ ‖xn + yn‖p ≤
kn+1∑

j=kn+1

|aj|p‖wj + vj‖p

≤
(

max
kn+1≤j≤kn+1

|aj|p
) ∞∑

j=kn+1

‖wj + vj‖p ≤ δ−pn−1

so that 1− δ−pn−1 ≤ ‖yn‖p . But

‖Tyn‖p ≤ ‖Txn‖p + ‖T‖p‖xn + yn‖p → 0 .

So T|V0
is not an isomorphism. This proves that the restriction of T to V1 := span{vn}∞n=1

is strictly singular, hence I|V1
= T|V1

+S|V1
is strictly singular by Lemma 6.1, a contradic-

tion. �

Theorem 3.4 is a corollary of Proposition 6.4.

Corollary 6.5. Suppose W , V are closed subspaces of Lp := Lp[0, 1], 0 < p < ∞, and

‖1(0,1/2)f‖L∞[0,1] ≤ C‖f‖Lp[0,1] , f ∈ W

‖1(1/2,1)f‖L∞[0,1] ≤ C‖f‖Lp[0,1] , f ∈ V .

Then W + V is closed in Lp.

Proof of Corollary 6.5. The formal identity mapping I∞,p : L∞[0, 1] → Lp[0, 1] is strictly
singular. When p = 2, this is contained in elementary text books (see e.g. [Ro, Chapter 10,
# 41, # 55]). The case p < 2 follows formally from this, and the case p > 2 follows via a
simple extrapolation argument (see e.g. [Jo-Li, Section 10]). Thus if T : Lp[0, 1] → Lp[0, 1] ,
S: Lp[0, 1] → Lp[0, 1] are defined by

Tf = 1(0,1/2)f , Sf = 1(1/2,1)f ,

we have that T|W and S|V are strictly singular. Also, every closed infinite dimensional
subspace of Lp[0, 1] contains an isomorphic copy of ℓr for some r < 2 by Bastero’s [Ba]
extension of the Krivine-Maurey stable theory. Thus Lp[0, 1] has property (B) by Remark
6.2 and Proposition 6.4 applies. An easier proof of the fact that Lp[0, 1] has property (B)
was given by Tam [Ta]. His proof uses Dvoretzky’s theorem rather than the theory of
stable spaces. �

Remark 6.4. The case 1 < p < ∞ in Corollary 6.5 was proved jointly with G. Schechtman
several years ago. Since this case is much simpler than the case 0 < p < 1, we present here
the proof.

Proof of Remark 6.4. Recall [Wo, III.D] that a weakly compact operator from L∞ (or any
other C(S)-space) is completely continuous; that is, sends weakly compact sets to norm
compact sets. Thus the composition of two weakly compact operators with the middle
space L∞[0, 1] must be a compact operator. Therefore we get from the hypotheses that
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the operators T : W → Lp[0, 1] and S : V → Lp[0, 1] are compact, where Tf := f1(0,1/2)
and Sf := f1(1/2,1). Thus if you fix 0 < δ < 1/2, there are closed, finite codimensional
subspaces W0 ⊂ W and V0 ⊂ V so that ‖TW0

‖ < δ and ‖SV0
‖ < δ . This implies that

W0 + V0 is closed in Lp[0, 1] (check that the unit spheres are a positive distance apart),
and hence W + V is also closed. �

We turn now to the proof of Part 2 of Lemma 6.1.

Proof of Part 2 of Lemma 6.1. For x ∈ X define |x|T := ‖Tx‖Y . This is a p-norm on X
because T is one-to-one. | · |T is strictly weaker than ‖ · ‖X on every infinite dimensional
subspace of X because T is strictly singular. Let X0 be an infinite dimensional closed
subspace of X and let {xn}∞n=1 be a normalized sequence in X0 so that |xn|T → 0. By
[K-P-R, Theorem 4.7], by passing to a subsequence we can assume that {xn}∞n=1 has a

lower ∞-estimate and that
∞∑

n=1
‖Txn‖pY < ∞ . Since S is strictly singular, there exists for

each n a unit vector zn ∈ span{xk}∞k=n so that ‖Szn‖Y → 0. Since {xn}∞n=1 has a lower
∞-estimate, the coefficients in the expansions of the yn’s in terms of the xn’s are uniformly

bounded, and hence ‖Tyn‖Y → 0 because
∞∑

n=1
‖Txn‖pY < ∞ and | · |pT satisfies the triangle

inequality. Thus T + S is not an isomorphism on X0. �
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[Bo-Er4] P.B. Borwein & T. Erdélyi, The full Müntz theorem in C[0, 1] and L1[0, 1], J. London Math.
Soc. 54 (1996), 102–110.
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Amer. Math. Soc. 157 (1971), 23–37.

[Mü] C. Müntz, Über den Approximationsatz von Weierstrass, H.A. Schwartz Festschrift, Berlin
(1914).
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