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Sub-Riemannian metrics

A rank ¢ distribution D = {D(q) }4en On @ manifold M is a rank ¢
subbundle of the tangent bundle T'M (a smooth field of /-dimensional
subspaces D(q) of the tangent spaces T;, ).

D is called bracket-generating distribution if at any point iterated Lie
brackets of vector fields tangent to D generate the whole tangent
space.

Rashevsky-Chow Any two points of M can be connected by a curve
tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner
product g, is chosen on each subspaces D(q) smoothly in g.

Riemannian case: D =TM
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Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve ~ tangent to the
distribution one can define the sub-Riemannian length by

S 9(3().4(6)) 2t .
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Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve ~ tangent to the
distribution one can define the sub-Riemannian length by

S 9(3().4(6)) 2t .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).

Two types of geodesics: normal and abnormal geodesics (the latter
depend on the distribution D but not on the metric as unparametrized
curves; no such geodesics in Riemannian case).
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Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function h, : 7*M — R defined by

1
hy(a,p) = 5 max {(p,v)” v € D(@), gla)(v,0) =1}, a€ M, peTyM

(quadratic form on the fiber 77 M)
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(= D) such that their tangent lines at almost every point belong
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Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function h, : 7*M — R defined by

1 *
hg(Q)ZO = é’DIaXZ{<]),U>21 S l)(Q)’ g(Q)(Qh U) = 1} ) q € A4} p € 1; M

(quadratic form on the fiber 77 M)

@ Normal extremals are trajectories A(-) of the Hamiltonian vector
field on a nonzero level set of ,,

At) = e\ for some A € T*M

@ Abnormal extremal: Lipshitzian curves in the zero level set of 7,
(= D) such that their tangent lines at almost every point belong
to the ker o| ., where o is the canononical symplectic form on
T*M.

Normal/abnormal geodesic are projections of normal/abnormal
extremals (from 7" M to M).
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Projective/affine equivalence and existence of orbital

diffeomorphism

Definition

Two sub-Riemannian metrics g, and g, on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.
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Projective/affine equivalence and existence of orbital

diffeomorphism

Definition

Two sub-Riemannian metrics g, and g, on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

Let g and g be two metrics on D.
Orbital diffeomorphism between 7, and /,; = local fiber-preserving
diffeomorphism @ : T*A — T*M such that ®(e"s\) = e*"3 (D())), i.e.
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Projective/affine equivalence and existence of orbital

diffeomorphism

Definition

Two sub-Riemannian metrics g, and g, on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

Let g and g be two metrics on D.
Orbital diffeomorphism between 7, and /,; = local fiber-preserving
diffeomorphism @ : T*A — T*M such that ®(e"s\) = e*"3 (D())), i.e.

Q*ﬁg = aﬁg, a€C(T*M)

Proposition

If g, g projectively equivalent, then Eg, }_ig orbitally diffeomorphic near
generic point of T* M
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The idea of the proof: recovery of an extremal from a

sufficiently high jet of the geodesic

All sR normal geodesics ~ starting at a given point ¢ € M with
[|7(0)|| = 1 are “parametrized” by points of the cylinder
hy ' (1/2) N Ty M:

(dim M-rank D) -parametric family of sR geodesics with the
same initial velocity
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In different directions of D sR geodesics may be distinguished by jets
of different order.
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In different directions of D sR geodesics may be distinguished by jets
of different order. For an even contact distribution there is a special
(characteristic) direction C' s. t. all geodesics « with the same initial
4(0) not in this direction are distinguished by the 2nd jet,
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The idea of the proof: recovery of an extremal from a

sufficiently high jet of the geodesic

All sR normal geodesics ~ starting at a given point ¢ € M with
[|7(0)|| = 1 are “parametrized” by points of the cylinder

-1 * .
hy1(1/2) N TEM:

(dim M-rank D) -parametric family of sR geodesics with the
same initial velocity

1

In different directions of D sR geodesics may be distinguished by jets

of different order. For an even contact distribution there is a special
(characteristic) direction C' s. t. all geodesics « with the same initial

4(0) not in this direction are distinguished by the 2nd jet, but the 2nd

jet of all geodesics with 4(0) in the direction of C' coincide. 22/90



The idea of the proof (continued)

Lemma

If distribution D is bracket-generating, then for a suficiently large k in a
neighborhood of a generic points in T* M the natural map

P i Aeh;'(1/2) — b (w(et%)) (k-jet of v att = 0)

is a diffeomorphism on its image.
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Lessons from the Riemannian case (Levi-Civita, Dini)

For a non rigid Riemannian metric g on M:

@ Integrability property: The flow of normal sR extremals (of the
vector field &,) admits at least one nontrivial (i.e. different from the
a constant multiple of h,) first-integrals which is quadratic on the
fibers, namely the integral of (Painleve type): if g is the metric
projectively equivalent to g and {\;}!", is the spectrum of the
transition operator between g and g, then

m

(T12) ™7y

s=1
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Lessons from the Riemannian case (Levi-Civita, Dini)

For a non rigid Riemannian metric g on M:

@ Integrability property: The flow of normal sR extremals (of the
vector field &,) admits at least one nontrivial (i.e. different from the
a constant multiple of h,) first-integrals which is quadratic on the
fibers, namely the integral of (Painleve type): if g is the metric
projectively equivalent to g and {\;}!, is the spectrum of the
transition operator between g and g, then

m

(ITx) ™y

s=1

@ Product structure/separation of variables: Locally
M = My x My and g = g1 x go for the affine equivalence or a sort
of twisted product in the case of projective equivalence.
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Existence of the first integral and generic projective

rigidity
Definition

A sR metric g; is called conformally projectively rigid if g» £ g1 implies
that g, is conformal to g;.
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Existence of the first integral and generic projective

rigidity

Definition

A sR metric g; is called conformally projectively rigid if g» £ g1 implies
that g, is conformal to g;.

Conformally projectively rigidity = affine rigidity;

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

If a sub-Riemannian metric is not conformally rigid, then the flow of its
normal extremals admits a nontrivial integral quadratic in impulses (i.e.
on the fibers of T*M ), namely the integral of Painleve type.
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Existence of the first integral and generic projective

rigidity
Definition

A sR metric g; is called conformally projectively rigid if g» £ g1 implies
that g5 is conformal to g;.

Conformally projectively rigidity = affine rigidity;

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

If a sub-Riemannian metric is not conformally rigid, then the flow of its
normal extremals admits a nontrivial integral quadratic in impulses (i.e.
on the fibers of T*M ), namely the integral of Painleve type.

Corollary

Generic sub-Riemannian metrics on a given distribution are
conformally projectively rigid and therefore affinely rigid (and actually
projectively rigid in real analytic category by 2020 preprint ,
arXiv:2001.08584). 20794




Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian

metrics by analogy with the metrics appearing in the Levi-Civita
theorem:
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standard coordinates in R” = RF1 x R*¥2 x .. .R¥= where R*s has
standard coordinates z;.
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Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dim M. Fix positive integers k1, ko, . .. k,,, such that

n="k +ky+...+kn Letz,=(2l,...,2%)and z = (z1,...,7,,) are
standard coordinates in R” = RF1 x R*¥2 x .. .R¥= where R*s has
standard coordinates z;.

Forany 1 < s < m let D, be a bracket generating distribution in R"s.

Consider the distribution D on R™ which is obtained by the product of
distributions D.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m > 2.
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Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and « is its defining 1-form,
i.e. a everywehere non-zero form annihilating D.

37/90



Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and « is its defining 1-form,
i.e. a everywehere non-zero form annihilating D.

@ D is called contact if rank D is even and the form da|p is
nondegenerate;

38/90



Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and « is its defining 1-form,
i.e. a everywehere non-zero form annihilating D.
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@ D is called even (or quasi) -contact if rankD is odd and da|p is
one -dimensional kernel (i.e. the kernel of minimal possible
dimension)

Then
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otherwise one of the components must be involutive and belong to
the kernel of da|p;
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Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and « is its defining 1-form,
i.e. a everywehere non-zero form annihilating D.

@ D is called contact if rank D is even and the form da|p is
nondegenerate;

@ D is called even (or quasi) -contact if rank D is odd and da|p is
one -dimensional kernel (i.e. the kernel of minimal possible
dimension)

Then

@ If D is contact, then it does not admit a product structure, because
otherwise one of the components must be involutive and belong to
the kernel of da|p;

@ If D is even-contact, then it admits the product structure: it is
locally the product of a contact distirbution and R;

@ Free distributions (i.e. the left-invariant ones on free truncated Lie
group) do not admit the product structure.
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 < s < m choose
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For every s, 1 < s < m choose a sub-Riemannian metric b; on the
distribution D of R*s and
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 < s < m choose a sub-Riemannian metric b; on the
distribution D, of R* and a function 3, depending on variables z, only
such that 3, is constant if ks > 1 and 3,(0) # 3,(0) for s # 1.
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 < s < m choose a sub-Riemannian metric b; on the
distribution D, of R* and a function 3, depending on variables z, only

such that 3, is constant if ks > 1 and 3,(0) # 3,(0) for s # 1.
Let

m

gl(i'> i') = sz(j)bs(is, i’s)a

s=1

92(i'7 i’) = Z )\S(E)’Ys(f)bs(i'& jfs)
s=1
where the velocities z belong to D, \s(z) = B(zs) [1% Bi(z1),

o 1 1
’Vs(x) - Hl;ﬁs Bi(@) m’
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 < s < m choose a sub-Riemannian metric b; on the
distribution D, of R* and a function 3, depending on variables z, only
such that 3, is constant if ks > 1 and 3,(0) # 3,(0) for s # 1.

Let

m

gl(i'> i') = sz(j)bs(is, i’s)a

s=1

0o, ) = SN2 (D), 324)

s=1

where the velocities z belong to D, \s(z) = B(zs) [1% Bi(z1),

o 1 1
’Vs(x) - Hl;ﬁs Bi(@) m’

Then ¢; £ ¢» near the origin.
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 < s < m choose a sub-Riemannian metric b; on the
distribution D, of R* and a function 3, depending on variables z, only
such that 3, is constant if ks > 1 and 3,(0) # 3,(0) for s # 1.

Let

m

gl(i'> :Z') = sz(j)bs(is, i’s)a

s=1

0o, ) = SN2 (D), 324)

s=1

where the velocities z belong to D, \s(z) = B(zs) [1% Bi(z1),
=\ 1 1

5(®) = [igs| Bz — Bt ’

Then ¢; £ ¢» near the origin.

Also, the normal extremal flow of ¢g; admits m integrals in involution as
in the Riemannian case.
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The main conjecture

Conjecture

The generalized Levi-Civita pairs are the only pairs of locally
projectively equivalent sR metrics and the generalized Levi-Civita pairs
with constant 3’s are the only pairs of locally affinely equivalent sR
metrics under certain regularity assumptions (stability of the transition
operator+equiregularity of distribution)
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The main conjecture

Conjecture

The generalized Levi-Civita pairs are the only pairs of locally
projectively equivalent sR metrics and the generalized Levi-Civita pairs
with constant 3’s are the only pairs of locally affinely equivalent sR
metrics under certain regularity assumptions (stability of the transition
operator+equiregularity of distribution)

The full positive answer beyond Riemannian metrics was obtained for
corank 1 distributions only (l. Z., 2006, A. Castillo, I. Z., 2014).
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Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics
under consideration are conformal, all objects are real analytic and

(complexified) abnormal extremals of D satisfy some special
properties:
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Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics
under consideration are conformal, all objects are real analytic and
(complexified) abnormal extremals of D satisfy some special
properties:

In this case the conjecture says that two conformal metrics are locally
projectively equivalent if and only if they are constantly proportional.
(2020 preprint , arXiv:2001.08584).
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Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics
under consideration are conformal, all objects are real analytic and
(complexified) abnormal extremals of D satisfy some special
properties:

In this case the conjecture says that two conformal metrics are locally
projectively equivalent if and only if they are constantly proportional.
(2020 preprint , arXiv:2001.08584).

In Riemannian geometry it is always true (for n > 1). This result is
attributed to H. Weyl, although it is a particular case of Levi-Civita
Theorem, so we call such results sub-Riemannian Weyl theorems and
the metric satisfying this result Weyl rigid.
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Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted
vversion fo it in the cae of projective equivalence).
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Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted

vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

@ Separation on the level of the nilpotent approximation of the sR
metrics in projective case;
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Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted
vversion fo it in the cae of projective equivalence).

We established two weaker separation results:

@ Separation on the level of the nilpotent approximation of the sR
metrics in projective case;

@ Separation on the level of Jacobi curves along generic extremals
(decoupling of the Jacobi equation) in the case fo affine
equivalence but for more general than sub-Riemannian
(sub-Finslerian, affine) problems.
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Tanaka symbol and nilpotent approximation of a

distribution

D is called equiregular at qq if all D7 have constant dimension in a
neighborhood of ¢.
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Tanaka symbol and nilpotent approximation of a

distribution

D is called equiregular at qq if all D7 have constant dimension in a
neighborhood of ¢.

Definition
@ The (Tanaka) symbol of an equiregular distribution D at a point qq
is the graded nilpotent Lie algebra

D(qo) ® D*(q0)/D(q0) ® D*(q0)/D*(q0) &+ - - -
NS A/AN

~~

9-1(qo0) 9-2(qo0) 9-3(qo0)
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Tanaka symbol and nilpotent approximation of a

distribution

D is called equiregular at qq if all D7 have constant dimension in a
neighborhood of ¢.

Definition
@ The (Tanaka) symbol of an equiregular distribution D at a point qq
is the graded nilpotent Lie algebra

D(qo) ® D*(q0)/D(q0) ® D*(q0)/D*(q0) &+ - - -
NS A/AN

~~

9-1(qo0) 9-2(qo0) 9-3(qo0)

@ The left-invariant distribution on the corresponding Lie group
obtained by the left translation of D(qo) is called the nilpotent
approximation of D at qo and is denote by D,,.
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Tanaka symbol and nilpotent approximation of a

distribution

D is called equiregular at qq if all D7 have constant dimension in a
neighborhood of ¢.

Definition
@ The (Tanaka) symbol of an equiregular distribution D at a point qq
is the graded nilpotent Lie algebra

D(qo) ® D*(q0)/D(q0) ® D*(q0)/D*(q0) &+ - - -
NS A/AN

~~

9-1(qo0) 9-2(qo0) 9-3(qo0)

@ The left-invariant distribution on the corresponding Lie group
obtained by the left translation of D(qo) is called the nilpotent
approximation of D at qo and is denote by D,,.
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Example: Tanaka symbol of contact distributions

For example, if D is a contact distribution of rank 2n, then its Tanaka
symbol is isomorphic to the 2n + 1 dimensional Heisenberg algebra:
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Example: Tanaka symbol of contact distributions

For example, if D is a contact distribution of rank 2n, then its Tanaka

symbol is isomorphic to the 2n + 1 dimensional Heisenberg algebra:
(X,Y) = [X,Y]

defines a simplectic form o on D, up to a multiplication by a constant ,

corresponding to the choice of the basis vector Z of D?/D).

(X,Y]=o(X,Y)Z

Take the Darboux basis F1, ..., E,, F;, ... F, of D with respect to o,
i.e. such that O’(EZ', F]) = (Sl]

Then [E;, F}| = §;;Z and it is the standard basis in the Heisenberg
algebra.
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Symbol and Nilpotent approximation of a sR structure

Definition
@ The symbol of an sR metric g is the pair consisting of the Tanaka
symbol of D at qo and the Euclidean structure g(qo) on D(qo).
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Symbol and Nilpotent approximation of a sR structure

Definition
@ The symbol of an sR metric g is the pair consisting of the Tanaka
symbol of D at qo and the Euclidean structure g(qo) on D(qo).

@ The nilpotent approximation of sub-Riemannian metric g on an
equiregular distribution D at a point qq is the left-invariant sR
structure g on the Lie group of the Tanaka symbol of D at qy such
that the Euclidean structure at the identity coincides with the
Euclidean structure at D(qq).
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Direct product structure on the level of nilpotent

approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

If g1 and g, are two sub-Riemannian metric on an equiregular
distribution D, which are locally projectively equivalent around a stable
point qo and not conformal, then the nilpotent approximation f)qo of D at
qo admits a product structure and the corresponding nilpotent
approximations g, and g, form a Levi-Civita pair with constant
coefficients.
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Direct product structure on the level of nilpotent

approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

If g1 and g, are two sub-Riemannian metric on an equiregular
distribution D, which are locally projectively equivalent around a stable
point qo and not conformal, then the nilpotent approximation f)qo of D at
qo admits a product structure and the corresponding nilpotent
approximations g, and g, form a Levi-Civita pair with constant
coefficients.

Corollary

Any sub-Riemannian metric on a rank 2 bracket generating distribution
is affinely rigid and conformally projectively rigid.

v
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Genericity of indecomposable fundamental graded Lie

algebras

Let GNLA(m,n) be the set of all n-dimensional negatively graded Lie
algebras generated by the homogeneous component of weight —1 and
such that this component has dimension m.
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Genericity of indecomposable fundamental graded Lie

algebras

Let GNLA(m,n) be the set of all n-dimensional negatively graded Lie
algebras generated by the homogeneous component of weight —1 and
such that this component has dimension m.

Proposition

Except the following two cases:
Q@ m=n—1withevenn,
Q (m7 n) - (47 6)’

a generic element of GNLA (m, n) cannot be represented as a direct
sum of two graded Lie algebras.
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Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

Let m and n be two integers such that 2 < m < n, and assume
(m,n) # (4,6) andm # n — 1 ifn is even. Then, given an

n-dimensional manifold M and a generic rank m distribution D on M,

any sub-Riemannian metric on (M, D) conformally projectively rigid
and therefore affinely rigid
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Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

Let m and n be two integers such that 2 < m < n, and assume
(m,n) # (4,6) and m # n — 1 if n is even. Then, given an
n-dimensional manifold M and a generic rank m distribution D on M,
any sub-Riemannian metric on (M, D) conformally projectively rigid
and therefore affinely rigid (and in the real analytic category even
projectively rigid from the following sub-Riemannian Weyl results).

Theorem (preprint, arXiv:2001.08584)

Let m and n be two integers such that 2 < m < n. On a generic real
analytic rank m distribution D on a connected n-dimensional real
analytic manifold M any sub-Riemannian metric is Weyl projectively
rigid.
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Decomposible in terms of spaces of skew-symmetric

forms

If D is of step 2, i.e. when D? = T'M, then the Tanaka symbol is
described by the the Levi operator £ : A\2D +— D?/D(=2 TM/D)
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Decomposible in terms of spaces of skew-symmetric

forms

If D is of step 2, i.e. when D? = T'M, then the Tanaka symbol is
described by the the Levi operator £ : N\*D +— D?/D(=2 TM/D) or,
equivalently, by the dual operator £ : D* — A2D*.
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Decomposible in terms of spaces of skew-symmetric

forms

If D is of step 2, i.e. when D? = T'M, then the Tanaka symbol is
described by the the Levi operator £ : N\*D +— D?/D(=2 TM/D) or,
equivalently, by the dual operator £ : D* — A2D*.

The image of this operator is the (n — m)-dimensional subspace (2 in
the space of skew-symmetric forms on D.
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Decomposible in terms of spaces of skew-symmetric

forms

If D is of step 2, i.e. when D? = T'M, then the Tanaka symbol is
described by the the Levi operator £ : N\*D +— D?/D(=2 TM/D) or,
equivalently, by the dual operator £ : D* — A2D*.

The image of this operator is the (n — m)-dimensional subspace (2 in
the space of skew-symmetric forms on D.

The Tanaka symbol is decomposible if and only Omegay = Qé @ Qg s.t.

A0
0 To ) and the

elements of Qg are < 8 j ) where the corresponding blocks have
2
the same nonzero size.

in some basis of d = g_1, the elements of Qé are (
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Why the Tanaka symbol in (4,6) case is not generically

indecomposible?

In the case of n — m = 2 (i.e. corank is 2) it is a pencil (i.e. a plane) of
skew-symmetric forms =- Kronecker theory of pencils.

For (m,n) = (4, 6) the equation Pfaffian(w) = 0,w € 2 is quadratic.
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Why the Tanaka symbol in (4,6) case is not generically

indecomposible?

In the case of n — m = 2 (i.e. corank is 2) it is a pencil (i.e. a plane) of
skew-symmetric forms =- Kronecker theory of pencils.
For (m,n) = (4, 6) the equation Pfaffian(w) = 0,w € 2 is quadratic.

If there are two distinguished (real) lines /; and [y in © satisfying this
equation (an open condition),
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Why the Tanaka symbol in (4,6) case is not generically

indecomposible?

In the case of n — m = 2 (i.e. corank is 2) it is a pencil (i.e. a plane) of

skew-symmetric forms =- Kronecker theory of pencils.
For (m,n) = (4, 6) the equation Pfaffian(w) = 0,w € 2 is quadratic.

If there are two distinguished (real) lines /; and [y in © satisfying this
equation (an open condition), D, and D, are two planes , which are
kernels of the forms on each line.
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Why the Tanaka symbol in (4,6) case is not generically

indecomposible?

In the case of n — m = 2 (i.e. corank is 2) it is a pencil (i.e. a plane) of
skew-symmetric forms =- Kronecker theory of pencils.
For (m,n) = (4, 6) the equation Pfaffian(w) = 0,w € 2 is quadratic.

If there are two distinguished (real) lines /; and [y in © satisfying this
equation (an open condition), D, and D, are two planes , which are
kernels of the forms on each line. =

(4 can be decomposed into sum of two lines of the form < f(l)l 8 )

and ( 8 j > in the bases compatible with the splitting D = D; & Ds.
2
Then D = D, x D», and D; form contact (2, 3) -distributions.
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Jacobi curves of normal extremals

Let I, be the vertical subspace of 7)\7* M, i.e. the tangent to the fiber
at \:

11

A //,/"//,/’
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Jacobi curves of normal extremals

Let I, be the vertical subspace of 7)\7* M, i.e. the tangent to the fiber
at \:

aa(e)  Mems
-1
"M % 1 —
]
| —
A
o
M 7 /

Let h := hy. To any extremal eth assign the curve of Lagrangian
subspaces
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Jacobi curves of normal extremals

Let I, be the vertical subspace of 7)\7* M, i.e. the tangent to the fiber
at \:

aa(e)  Mems
-1
"M % 1 —
]
| —
A
o
M 7 /

Let h := hy. To any extremal eth assign the curve of Lagrangian
subspaces

t— Ja(t) = d(efth)(l_[et,;/\)
in the symplectic space 7T\7* M, the Jacobi curve of the extremal elh\.
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Jacobi curves: conjugate points, sub-Riemannian

connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
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Jacobi curves: conjugate points, sub-Riemannian

connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).

They contain all information about Jacobi fields and conjugate points
along extremals.)
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Jacobi curves: conjugate points, sub-Riemannian

connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).

They contain all information about Jacobi fields and conjugate points

along extremals.) For example, a point 7 is conjugate to 0 along the
extremal e'” )\ iff

I NJA0) £ 0.
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Jacobi curves: conjugate points, sub-Riemannian

connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).

They contain all information about Jacobi fields and conjugate points

along extremals.) For example, a point 7 is conjugate to 0 along the
extremal e'” )\ iff

I NJA0) £ 0.
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Jacobi curves: conjugate points, sub-Riemannian

connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).

They contain all information about Jacobi fields and conjugate points
along extremals.) For example, a point t is conjugate to 0 along the
extremal e'” )\ iff

I NJA0) £ 0.

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the
action of the symplectic group on T, 7* M) produces a function on
T* M For example, symplectically invariant constructions with Jacobi
curves of Riemannian extremals gives an alternative construction of
the the Riemannian curvature tensor .

Studying more general curves in LG one can construct analogous
canonical (but non-linear) Ehresmann connection and curvature type
invariants for any sub-Riemannian metric and more general geometric
structure (Agrachev-1.Z.(20002)., Chengbo Li -I.Z. (2009). 85/90



Separation/direct product on the level of Jacobi

equations/Jacobi curves of extremals

Projective/affine equivalence of g; and g» = existence of the
fiber-preserving preserving orbital diffeomorphism ¢ between
Hamiltonian flows of the correspondng HAmiltonians ﬁm and 592 on
the open dense set of T* M
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Separation/direct product on the level of Jacobi

equations/Jacobi curves of extremals

Projective/affine equivalence of g; and g» = existence of the
fiber-preserving preserving orbital diffeomorphism ¢ between
Hamiltonian flows of the correspondng HAmiltonians ﬁgl and HQQ on
the open dense set of T* M =

. sends the Jacobi curve at A of the corresponding extremal of ¢; to
the Jacobi curve at ®(\) of the corresponding extremal g, (the curves
are considered as unparametrized curves)

87/90



Separation/direct product on the level of Jacobi

equations/Jacobi curves of extremals

Projective/affine equivalence of g; and g» = existence of the
fiber-preserving preserving orbital diffeomorphism ¢ between
Hamiltonian flows of the correspondng HAmiltonians ﬁm and 592 on
the open dense set of T* M =

. sends the Jacobi curve at A of the corresponding extremal of ¢; to
the Jacobi curve at ®(\) of the corresponding extremal g, (the curves
are considered as unparametrized curves)

Theorem (1.Z.)

If a sub-Riemannian metric is not affinely rigid, then the Jacobi curve
of a generic normal extremal is a direct product of curves in
Lagrangian Grassmannians of smaller dimensions.
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