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CR-structures of hypersurface type

M is a real hypersurface in Cn+1,

D(q) = TqM ∩ iTqM is the maximal complex subspace of TqM ;

J : D → D be the restriction of multiplicaton by i to D, J2 = −Id;

The pair (D,J) defines the CR structure on the real hypersurface M ;

The i-eigenspace of H ⊂ CD of J is called the holomorphic subbundle
of CTM ;

Integrability condition: [H,H] ⊂ H.

CD = H ⊕ H̄.
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Levi kernel of CR structure

Levi form is an Hermitian form on H:

L(X,Y ) = i[X,Y ] mod CD.

Levi kernel K = kerL.

Levi nondegenerate case, i.e. when K = 0, is very well understood
case (Cartan, Tanaka, Chern-Moser).

Uniformly Levi degenerate case is when K is non-trivial at every point.
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Levi 2-nondegenerate structures

Fix x ∈M . For any v ∈ K define

adv : Hx/Kx → Hx/Kx,

y 7→ [V, Y ]|x mod Kx ⊕Hx,

where V and Y are extensions of v and y to local section of K and
H/K, respectively.

Definition
A CR structure is called 2-nondegenerate if adv 6= 0 for all v 6= 0.
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Previously known results

The smallest dimension of M when 2-nondegenericity may occur is
dimRM = 5⇒ dimCK = 1:

dimCH > dimCK ≥ 1⇒ dimCH ≥ 2⇒ dimRM ≥ 5.

Theorem (Isaev-Zaitsev (2013), Pocchiola (2013), Medori-Spiro
(2014))
For dimM = 5 to any 2-nondegenerate CR structure of hypersurface
type one can assign the canonical absolute paralllelism on
10-dimensional bundle over M and there exists the unique, up to local
diffeomorphism, maximally symmetric model with the algebra of
infinitesimal symmetries so(2, 3).

C. Porter (2016) − similar results in dimCM = 7, dimCK = 1 under
some additional algebraic assumptions.
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The scope of our results

C. Porter, I.Z. (2017)-bigraded analog of Tanaka prolongation for
construction of absolute paralellism for 2-nondegenerate CR structures
of hypersurface type of arbitrary odd dimension under additional
algebraic assumptions (which even in dimension 7 are weaker than of
Porter 2016).
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Tanaka like bigraded prolongation for
2-nondegenerate CR structures of hypersurface type

We work with complexified object: natural filtration on CTM :

K ⊕ K̄ ⊂ CD ⊂ CTM

Associated grading:

K ⊕ K̄︸ ︷︷ ︸
of weight 0

⊕CD/(K ⊕ K̄)︸ ︷︷ ︸
g−1

⊕CTM/CD︸ ︷︷ ︸
g−2

,

where g− = g−1 ⊕ g−2 is the Heisenberg algebra.
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Natural bigrading

g−1,−1 := H̄/K̄, g−1,1 := H/K, g−2,0 := g−2;

∀v ∈ K: adv : H/K︸ ︷︷ ︸
g−1,−1

→ H/K︸ ︷︷ ︸
g−1,1

Extend adv trivially to H/K(= g−1,1) and to g−2(= g−2,0):
adv|g−1,1⊕g−2,0 = 0. So, adv is identified with an element of
Der(g−) ∼= csp(g−).

g0,2 := the image in Der(g−) of {adv : v ∈ K} under this
identification;

g0,−2 := ḡ0,2;

[g0,2, g−1,−1] ⊂ g−1,1; [g0,−2, g−1,1] ⊂ g−1,−1;

Let g0,0 be the subalgebra of all elements in Der(g−) such that

[g0,0, g0,±2]︸ ︷︷ ︸
brackets in Der(g−)

⊂ g0,±2

[g0,0, g−1,±1] ⊂ g−1,±1
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Definition
The symbol of a 2-nondegenerate CR structure of hypersurface type at
a point is a bigraded vector subspace

g0 = g−2,0 ⊕ g−1,−1 ⊕ g−1,1 ⊕ g0,−2 ⊕ g0,0 ⊕ g0,2

of the Lie algebra g− ⊕Der(g−) together with the antilinear involution ¯
induced by the complex conjugation on CD: Āv := Av̄,A ∈ Der(g−).

Important point In general the symbol g0 is not a Lie subalgebra of
g− ⊕Der(g−): the operation of Lie brackets is compatible with the
bigrading for all pairs of bigraded component except (g0,−2, g0,2), i.e. in
general [g0,−2, g0,2] * g0,0, because

[
[g0,−2, g0,2], g0,±2

]
* g0,±2

Definition
The symbol g0 is called regular, if

[g0,−2, g0,2] ⊂ g0,0

or equivalent g0 is a Lie subalgebra of g− ⊕Der(g−). 27 / 68
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Universal bigraded prolongation of CR symbol

Among all bigraded Lie algebras of the form

g0 ⊕ g1,−1 ⊕ g1,1︸ ︷︷ ︸
no g1,±3 in g1

⊕
⊕

i≥2,j∈Z
gi,j

take the maximal non-degenerate one (non-degenerate means that for
every nonzero x with non-negative first weight adx|g− 6= 0).
This algebra is called the universal bigraded algebraic prolongation of
g0 and it is denoted by U(g0).

g1,−1 = {f ∈ g̃1,−1 | [f, g0,−2] = 0,
[
[f, g0,2], g0,2

]
= 0},

g1,1 = {f ∈ g̃1,1 | [f, g0,2] = 0,
[
[f, g0,−2], g0,−2

]
= 0}.

where g̃1,1, g̃1,−1 come from the standard Tanaka prolongation of g0.

It is endowed with the natural involution induced by the complex
conjugation in CD. Let <U(g0) be the real part of U(g0) with respect to
this involution.
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The main theorem on existence of absolute parallelism

Theorem (a bigraded analog of the standard Tanaka theorem)

Assume that dimU(g0) <∞.
1 To any 2-nondegenerate, hypersurface type CR structure with

regular symbol g0 one can assign the canonical structure of
absolute parallelism on a bundle over M of (real) dimension equal
to dimC U(g0);

2 Up to a local diffeomorphism , there exists the unique maximally
symmetric CR structure among all 2-nondegenerate CR structures
with constant symbol g0 and its algebra of infinitesimal symmetries
is isomorphic to the real part <U(g0) of U(g0);
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symmetric CR structure among all 2-nondegenerate CR structures
with constant symbol g0 and its algebra of infinitesimal symmetries
is isomorphic to the real part <U(g0) of U(g0);
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Classification of regular symbols with one dimensional
Levi kernel

The space of symbols of 2-nondegenerate CR structures, up to an
isomorphism ∼= the space of pairs

(a real line ` of nondegenerate Hermitian forms on g−1,1, a complex
line of self-adjoint anti-linear operators A on g−1,1),

up to the natural action of GL(g−1,1), where

A(y) = adv(ȳ), v ∈ g0,2, y ∈ g−1,1

We classified all such pairs recently with David Sykes (Linear Algebra
Appl. 590 (2020), 32–61)
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For dimRM = 5, then dimC g−1,1 = 1, so there is only one symbol and
it is regular. U(g0) ∼= so(5) ∼= B2, <U(g0) ∼= so(3, 2)
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Proposition
A symbol of 2-nondegenerate CR structure given by the pair (R`,CA)
is regular if and only if

A3 = αA, α ∈ R.

We subdivide the set of regular 2-nondegenerate symbols with
1-dimensional Levi kernel (which is a discrete set) into

nilpotent regular , if α = 0 or , equivalently, A3 = 0;
non-nilpotent regular otherwise, i.e. when α 6= 0. The latter type is
subdivided into two subtypes:

I strongly non-nilpotent regular, if A is a bijection;
I weakly non-nilpotent regular otherwise.
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We calculated the universal bigraded prolongation for all such symbols.

The third prolongation (w.r.t. the first weight) is always zero.
The second prolongation (w.r.t. the first weight) is nonzero only in
the following two cases:

I for stronlgly non-nilpotent regular symbols, i.e. when the antilineaar
operator A is a bijection;

I for nilpotent regular symbol with A2 = 0.
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Bigraded prolongations of strongly non-nilpotent
symbols

α depends on the choice of a generator A of the corresponding line,
but its sign is independent of this choice.

Assume that g0 is strongly non-nilpotent regular symbol, described by
the pair (`, A). In this case A2 = αI, α 6= 0. Let dimRM = 2n+ 3.
Then

U(g0) ∼= so(n+ 4,C)

As <U(g0) one can gets any real form of so(n+ 4,C), except so(n+ 4)
and so(n+ 3, 1) :

If α > 0: ` may have an arbitrary signature (p, q) with p+ q = n.
Then

<U(g0) ∼= so(p+ 2, q + 2);

The case α < 0 may happen if and only if dimM ≡ 3 mod 4 and
signature with p = q = dimM−3

4 . Then

<U(g0) ∼= so∗(2p+ 4.)
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Bigraded prolongation of nilpotent symbols with A2 = 0

Assume that g0 is weakly nilpotent, i.e. A3 = 0, A 6= 0.

The classification is by the Jordan normal form of A where all blocks
are nilpotent and of the size not greater than 3 and at least one block is
of size 2.

The maximally symmetric case (for the fixed dimM ≥ 7) is when there
is only one nontrivial Jordan block and it is of size 2. In this case

dimU(g0) =

(
dimM − 1

2

)2

+ 7

and it is not semi-simple.
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Comparing dimensions of prolongations for strongly
non-nilpotent and maximally symmetric nilpotent
cases

dimM dimU(g0) maximal dimU(g0)
for strongly non-nilpotent symbols for nilpotent symbols

7 15 16
9 21 23
11 28 32
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For example, in the case dimM = 7 and of A2 = 0

U(g0) =
(
C⊕ (sl2(C)⊕ sl2(C))

)
n (V3 ⊗ V3)
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Maximally homogeneous model for nilpotent symbols:
hypersurface realization

Assume that the symbol is given by a pair (`, A) where A2 = 0 and A
has exactly one nonzero Jordan block of size 2. Let ` has signature
(p, q).

Let n = 1
2(dimM − 1). Then in coordinates (z1, . . . , zn, w) for Cn+1 the

(local) hypersurface realizations of the maximally symmetric models for
this symbol are the hypersurfaces given by the equation

Im(w + z21 z̄n) = z1z̄2 + z̄1z2 +
n−1∑
i=3

εiziz̄i,

where εi ∈ {−1, 1} and {εi}n−1i=3 consists of p− 1 terms equal to 1 and
q − 1 terms equal to −1.

If dimM = 7, then n = 3 and the model is:

Im(w + z21 z̄3) = z1z̄2 + z̄1z2.
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Theorem (David Sykes and I. Z.)
Among all homogeneous 2-nondegenerate CR structures with one
dimensional kernel the models with the symmetry algebra of maximal
dimension are the models of the previous slide (i.e. the flat model for
the nilpotent CR symbol with A2 = 0 and A having exactly one nonzero
Jordan block of size 2).

66 / 68



A. Isaev, D. Zaitsev, Reduction of five-dimensional uniformly Levi degenerate CR
structures to absolute parallelisms. J. Geom. Anal. 23 (2013), no. 3, 1571–1605.

C. Medori , A. Spiro, The equivalence problem for 5-dimensional Levi degenerate
CR manifolds, Int. Math. Res. Not. IMRN 2014, no. 20, 5602–5647.

C. Porter, The Local Equivalence Problem for 7-Dimensional, 2-Nondegenerate
CR Manifolds whose Cubic Form is of Conformal Unitary Type, preprint,
arXiv:1511.04019v3 [math.DG].

C. Porter and I. Zelenko, Absolute parallelism for 2-nondegenerate CR structures
via bigraded Tanaka prolongation, preprint, arXiv:1704.0399v3[math.DG], 42
pages.

D. Sykes and I. Zelenko, A canonical form for pairs consisting of a Hermitian form
and a self-adjoint antilinear operator, Linear Algebra Appl. 590 (2020), 32?61

67 / 68



THANK YOU VERY MUCH FOR YOUR ATTENTION!

68 / 68


